matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenPumping Lemma
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Formale Sprachen" - Pumping Lemma
Pumping Lemma < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pumping Lemma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Fr 22.08.2008
Autor: TTaylor

Aufgabe
L= [mm]\{a^n b^m c^n| n>0, m>0\}[/mm]
Ist L regulär?


Annahme L ist regulär:

Ich wähle mir ein Wort w=[mm]a^n b^m c^n[/mm]
und für w= xyz gilt nach Pumping Lemma:

|y|=nicht leer
|xy|<= n
|xy| besteht nur aus a's.

Nach Pumping Lemma muss xz auch Element von L sein.
Da aber |y|nicht leer, kann xz nicht mehr als n-1 a's besitzen. --> L nicht regulär.

ich denke, dass der Beweis so nicht stimmt aber ich weiß nicht wie ich es anders machen soll. Brauche Hilfe!

Ich verstehe auch nicht warum für jede Zerlegung für w=xyz ;
|xy|*n gelten soll?

        
Bezug
Pumping Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Sa 23.08.2008
Autor: uliweil


> L= [mm]\{a^n b^m c^n| n>0, m>0\}[/mm]
>  Ist L regulär?
>  

Dein Beweis ist im wesentlichen richtig, es sind nur ein paar Schönheitsfehler drin:

>
> Annahme L ist regulär:

Aha, du behauptest also, L sei nicht regulär und willst das mit einem Widerspruchsbeweis zeigen.

Dann gibt es nach PL eine konstante Zahl (nenn sie wie du willst, aber n ist als Bezeichnung ungünstig, weil n ja schon in der Beschreibung der Sprache benutzt wird. Ich nenne sie jetzt mal k), sodass für alle Wörter w der Sprache mit |w| [mm] \ge [/mm] k gilt: ...

>  
> Ich wähle mir ein Wort w=[mm]a^n b^m c^n[/mm]

Diese Wort musst du also so wählen, dass es garantiert mindestens die Länge k hat, dafür würde sich hier also w=[mm]a^k b^m c^k[/mm] anbieten, mit irgendeinem m (auch das kannst du wenn du willst festlegen: m = 1 oder m=k zum Beislpiel).

>  und für w= xyz gilt
> nach Pumping Lemma:

>  
> |y|=nicht leer
>  |xy|<= n

Hier muss dann mit meinen Bezeichnungen |xy|<= k hin

Die Aussage des PL ist: es gibt eine Zerlegung in x, y, und z, sodass ...
Im indirekten Beweis musst du den Widerspruch für jede mögliche Zerlegung mit diesen Eigenschaften herleiten.
Dazu überlegst du richtig:

>  |xy| besteht nur aus a's.

Dies ist also keine direkte Aussage des PL, sondern ein Folgerung aus den beiden ersten Eigenschaften und der Wahl deines Wortes

>  
> Nach Pumping Lemma muss xz auch Element von L sein.
>  Da aber |y|nicht leer, kann xz nicht mehr als n-1 a's

k-1 a's

> besitzen. --> L nicht regulär.

Diese Folgerung ist richtig, aber vielleicht etwas schnell (offenbar scheint sie ja dir selber nicht klar zu sein).
Also etwas ausführlicher:
Da |y| nicht leer ist und xy nur aus a's besteht, besteht auch y nur aus a's und zwar mindestens einem. Damit unterscheidet sich xz von w dadurch, dass mindestens ein a fehlt, die Anzahl der b's und c's aber unverändert ist. Also xz = [mm]a^p b^m c^k[/mm] mit p < k
Damit hat xz nicht die Gestalt [mm]a^n b^m c^n[/mm] (dh es hat nicht gleich viele a's wie c's) und ist deshalb nicht in L.

>  
> ich denke, dass der Beweis so nicht stimmt aber ich weiß
> nicht wie ich es anders machen soll. Brauche Hilfe!

Wie gesagt, im wesentlichen war dein Beweis richtig.

>  
> Ich verstehe auch nicht warum für jede Zerlegung für w=xyz
> ;
>  |xy|*n gelten soll?

Diese Frage verstehe ich nicht. Was soll gelten?

Beste Grüße

Uli


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]