matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePullback von Differentialform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Pullback von Differentialform
Pullback von Differentialform < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pullback von Differentialform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Mi 23.01.2013
Autor: kullinarisch

Aufgabe
Gegeben:

- Katenoid [mm] K=\{(x,y,z)\in\IR^3| x^2+y^2=cosh^2(z)\} [/mm] 2-dimensionale Untermannigfaltigkeit

- [mm] \Psi: \IR^2 \to [/mm] K, [mm] \Psi(u,v)=(cosh(u)cos(v),cosh(u)sin(v),u) [/mm] eine lokale Parametrisierung von K

(a) Berechne die Volumenform [mm] \omega_K [/mm] auf K

(b) Berechne [mm] \Psi^\*(f\omega_K), [/mm] wobei f: [mm] K\to \IR, f(x,y)=\bruch{1}{x^2+y^2} [/mm]

Hallo hallo!

Also zur (a):

allgemeine Formel: zu einer Karte (U, [mm] \phi=(\phi_1,...,\phi_n) [/mm] einer Untermannigfaltigkeit M der Dimension n, ist [mm] \omega_M=\operatorname{sgn}(\phi)\wurzel{G(\bruch{\partial}{\partial x_1},...,\bruch{\partial}{\partial x_n}}d\phi_1\wedge...\wedge d\phi_n [/mm] mit [mm] \bruch{\partial}{\partial x_i}=\bruch{\partial}{\partial x_i}\phi^{-1}(\phi(x)) [/mm] die Volumenform gegeben.




Mein Ergebnis dazu ist:

[mm] \omega_K=\wurzel{2(cosh(u)^2+sinh(u)^2)cosh(u)^2}du\wedge [/mm] dv


Das habe ich mithilfe der Parametrisierung [mm] \phi [/mm] gemacht, die lokal ja die Umkehrfunktion einer Karte ist und mir eine Basis eines Tangentialraumes liefert.

Das Vorzeichen [mm] \operatorname{sgn}(\phi) [/mm] habe ich jetzt allerdings noch nicht berechnet, es kann daher auch sein das dort ein Minus davor muss. Ich hatte in einem anderen Artikel schon mal eine Orientierung des Katenoids berechnet, mit deren Hilfe ich das Vorzeichen bestimmen könnte. War mir aber zu viel Arbeit..
Der Rest sollte aber stimmen oder? Ist natürlich jetzt auch blöd das extra nachzurechnen. Es geht mir auch mehr um den Teil (b).

(b) Für was steht diese Notation [mm] \Psi^\*(f\omega_K)? [/mm] Wäre da nicht dieses f noch in der Klammer, dann wäre damit der Pullback der Volumenform [mm] \omega_K [/mm] via [mm] \psi [/mm] gemeint, was kein Problem darstellt. Was aber soll dieses f noch? Kennt jmd diese Notation? In der Vorlesung ist die in dieser Form noch nicht aufgetaucht.

Grüße, kulli

        
Bezug
Pullback von Differentialform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Di 05.02.2013
Autor: MathePower

Hallo kullinarisch,

> Gegeben:
>  
> - Katenoid [mm]K=\{(x,y,z)\in\IR^3| x^2+y^2=cosh^2(z)\}[/mm]
> 2-dimensionale Untermannigfaltigkeit
>  
> - [mm]\Psi: \IR^2 \to[/mm] K,
> [mm]\Psi(u,v)=(cosh(u)cos(v),cosh(u)sin(v),u)[/mm] eine lokale
> Parametrisierung von K
>  
> (a) Berechne die Volumenform [mm]\omega_K[/mm] auf K
>  
> (b) Berechne [mm]\Psi^\*(f\omega_K),[/mm] wobei f: [mm]K\to \IR, f(x,y)=\bruch{1}{x^2+y^2}[/mm]
>  
> Hallo hallo!
>  
> Also zur (a):
>  
> allgemeine Formel: zu einer Karte (U,
> [mm]\phi=(\phi_1,...,\phi_n)[/mm] einer Untermannigfaltigkeit M der
> Dimension n, ist
> [mm]\omega_M=\operatorname{sgn}(\phi)\wurzel{G(\bruch{\partial}{\partial x_1},...,\bruch{\partial}{\partial x_n}}d\phi_1\wedge...\wedge d\phi_n[/mm]
> mit [mm]\bruch{\partial}{\partial x_i}=\bruch{\partial}{\partial x_i}\phi^{-1}(\phi(x))[/mm]
> die Volumenform gegeben.
>  
>
>
>
> Mein Ergebnis dazu ist:
>  
> [mm]\omega_K=\wurzel{2(cosh(u)^2+sinh(u)^2)cosh(u)^2}du\wedge[/mm]
> dv
>  


Poste dazu Deine Rechenschritte.


>
> Das habe ich mithilfe der Parametrisierung [mm]\phi[/mm] gemacht,
> die lokal ja die Umkehrfunktion einer Karte ist und mir
> eine Basis eines Tangentialraumes liefert.
>
> Das Vorzeichen [mm]\operatorname{sgn}(\phi)[/mm] habe ich jetzt
> allerdings noch nicht berechnet, es kann daher auch sein
> das dort ein Minus davor muss. Ich hatte in einem anderen
> Artikel schon mal eine Orientierung des Katenoids
> berechnet, mit deren Hilfe ich das Vorzeichen bestimmen
> könnte. War mir aber zu viel Arbeit..
>  Der Rest sollte aber stimmen oder? Ist natürlich jetzt
> auch blöd das extra nachzurechnen. Es geht mir auch mehr
> um den Teil (b).
>  
> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm] Wäre
> da nicht dieses f noch in der Klammer, dann wäre damit der
> Pullback der Volumenform [mm]\omega_K[/mm] via [mm]\psi[/mm] gemeint, was
> kein Problem darstellt. Was aber soll dieses f noch? Kennt
> jmd diese Notation? In der Vorlesung ist die in dieser Form
> noch nicht aufgetaucht.
>  


Möglicherweise ist so was gemeint:

[mm]f\left(x,y\right) \ dx \wedge dy[/mm]


> Grüße, kulli



Gruss
MathePower

Bezug
        
Bezug
Pullback von Differentialform: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Do 07.02.2013
Autor: SEcki


> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm]

Multipilkation! Das ist die Form die entsteht, in dem an jedem Punkt [m]\omega_K[/m] mit f multipliziert. Anders ist es auch das Dachprodukt der 0-Form f, also [m]f\wedge \omega_K[/m]. Das kann dann beim Berechnen wirklich helfen :-).

Zu deiner a): sicher, dass es so gewollt/gewünscht ist? Dein Ergebnis sieht ja eher wie das Pullback auf die Parametrisierung aus. Ich hätte jetzt das ganze spontan im [m]\IR^3[/m] erwartet, was auch eher deiner Formel entspräche.

SEcki



Bezug
                
Bezug
Pullback von Differentialform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Sa 09.02.2013
Autor: kullinarisch


> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm]
>  
> Multipilkation! Das ist die Form die entsteht, in dem an
> jedem Punkt [m]\omega_K[/m] mit f multipliziert. Anders ist es
> auch das Dachprodukt der 0-Form f, also [m]f\wedge \omega_K[/m].
> Das kann dann beim Berechnen wirklich helfen :-).
>  
> Zu deiner a): sicher, dass es so gewollt/gewünscht ist?
> Dein Ergebnis sieht ja eher wie das Pullback auf die
> Parametrisierung aus. Ich hätte jetzt das ganze spontan im
> [m]\IR^3[/m] erwartet, was auch eher deiner Formel entspräche.
>  
> SEcki
>  
>  

Hi! Hatte sich zwar schon geklärt, aber danke!

Zur Volumenform: Das ist nur eine lokale Darstellung bezüglich der lokalen Parametrisierung [mm] \Psi [/mm]

Die globale Form bekommt man z.B. mit [mm] Grad(F)\neg dx\wedge dy\wedge dz=2xdy\wedge dz-2ydx\wedgedz+2cosh(u)sinh(u)dx\wedge [/mm] dy (inneres Produkt)
und [mm] F(x,y,z)=x^2+y^2-cosh(z)^2 [/mm]


Und ich habe nochmal nachgerechnet und ich glaube ich habe mich verrechnet. Richtig ist:

[mm] \omega_K=\wurzel{sinh(u)^2+1}cosh(u)du\wedge [/mm] dv vielleicht ist es aber auch nur eine Umformung..

Dann ist

[mm] \Psi^\*(f\omega_K)=\Psi^\*(f)\Psi^\*(\omega_K)=du\wedge [/mm] dv kürzt sich alles weg, wenn man richtig umformt


Grüße, kulli

Bezug
        
Bezug
Pullback von Differentialform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 07.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]