matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenPseudoinverse Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Pseudoinverse Abbildung
Pseudoinverse Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pseudoinverse Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 02.12.2008
Autor: MartinW

Aufgabe
1. Gegeben sind die Vektorräume V, W und g [mm] \varepsilon [/mm] L(V,W). Wählen Sie eine beliebige Projetion p: W [mm] \to [/mm]
g(V) und in V ein beliebiges Komplement U von ker g. Zeigen Sie dass die Abbildung [mm] g_{1}: [/mm]
g(V) [mm] \to [/mm] V, die jedem Vektor sein einziges g-Urbild in U zuordnet wohldef. und linear ist.
Zeigen Sie zudem, dass dann g1 [mm] \circ [/mm] p eine zu g pseudoinvese Abb. ist. Skizzieren Sie die
Konstruktion für dim V = dim W = 3, rg g =2

2. Wie vereinfacht sich die Konstr. Wenn g injetiv, surjekt, bijekiv ist?

3. Beweisen Sie, dass jede zu g pseudoinv. Abb. h die zuvor beschriebene Darstellung für
U=h(W) und ker p = ker h gestattet.

Hallo. Vl. kann mir jemend bei dem Beispiel weiterhelfen. Wenn ich als p = (1 0 0 | 0 1 0 | 0 0 0) wähle und g = (1 0 0|2 0 0|0 1 0) nehme, wie komme ich dann zur Abbildung g1?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Pseudoinverse Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mi 03.12.2008
Autor: angela.h.b.


> 1. Gegeben sind die Vektorräume V, W und g [mm]\varepsilon[/mm]
> L(V,W). Wählen Sie eine beliebige Projetion p: W [mm]\to[/mm]
>  g(V) und in V ein beliebiges Komplement U von ker g.
> Zeigen Sie dass die Abbildung [mm]g_{1}:[/mm]
> g(V) [mm]\to[/mm] V, die jedem Vektor sein einziges g-Urbild in U
> zuordnet wohldef. und linear ist.

> Wenn ich als p = (1 0 0 | 0 1 0 | 0 0 0) wähle und g = (1 0
> 0|2 0 0|0 1 0) nehme, wie komme ich dann zur Abbildung g1?

Hallo,

[willkommenmr].

Wenn ich das, was Du schreibst, richtig deute, möchtest Du [mm] V,W=\IR^3, [/mm]

[mm] p:=\pmat{1&0&0\\0&1&0\\0&0&1} [/mm] und

[mm] g:=\pmat{2&1&0\\0&0&1\\0&0&0} [/mm]

nehmen.

Es ist in der Tat  p eine Projektion vom  [mm] \IR^3 [/mm] auf [mm] g(\IR^3). [/mm]

Weiter benötigst Du ja vor dem Aufbau von [mm] g_1 [/mm] noch den Kern von g  und vor allem ein Komplement U von Kerng.

Die Abbildung [mm] g_1:g(V)[/mm]  [mm]\to[/mm] V soll dann folgendes tun:

[mm] g_1(v)= [/mm] u , wobei  g(u)=v mit [mm] u\in [/mm] U.

Diese Abbildung sollst Du in Teil 1 untersuchen.

Gruß v. Angela







> Zeigen Sie zudem, dass dann g1 [mm]\circ[/mm] p eine zu g
> pseudoinvese Abb. ist. Skizzieren Sie die
> Konstruktion für dim V = dim W = 3, rg g =2
>  
> 2. Wie vereinfacht sich die Konstr. Wenn g injetiv,
> surjekt, bijekiv ist?
>  
> 3. Beweisen Sie, dass jede zu g pseudoinv. Abb. h die zuvor
> beschriebene Darstellung für
>  U=h(W) und ker p = ker h gestattet.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]