matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematicaPseudoInverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathematica" - PseudoInverse
PseudoInverse < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PseudoInverse: Inverse berechnen
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 03.09.2007
Autor: Jtosik

Hallo,

Ich muss aufgrund meiner Studienarbeit eine Gleichung der Form G.Ek=B.E lösen,wobei Ek und E Vektoren der Länge 12, G und B quadratische Matrizen der Größe 12 sind. Ich muss nun hierfür die Inverse bzw. die Pseudoinverse berechnen. Das mache ich so: H=PseudoInverse[G]. Mathematica kann das aber nicht. Habe Ihn über Nacht angelassen und er liefert mir immer noch kein Ergebnis. Kann mir da jmd vielleicht helfen?

P.S.:

Die Matrix G, von der Ich die Inverse möchte sieht so aus:

[mm] $\pmat{0&0&i Dy \Delta l&0&0&-iDz\Delta l&0&0&AyZ\Delta l&0&0&AzZ\Delta l\\ 0&-iDx\Delta l&0&0&iDz\Delta l&0&0&AxZ\Delta l&0&0&AzZ\Delta l&0\\iDx\Delta l&0&0&-iDy\Delta l&0&0&AxZ\Delta l&0&0&AyZ\Delta l&0&0\\0&0&0&\frac{Ay\Delta l}{Z}&\frac{Az\Delta l}{Z}&0&0&0&0&iDy\Delta l&-iDz\Delta l&0\\ \frac{Ax\Delta l}{Z}&0&0&0&0&\frac{Az\Delta l}{Z}&-iDx\Delta l&0&0&0&0&iDz\Delta l\\0&\frac{Ax\Delta l}{Z}&\frac{Ay\Delta l}{Z}&0&0&0&0&iDx\Delta l&-iDy\Delta l&0&0&0\\0&0&0&-4Ay\Delta l&4Az\Delta l&0&0&0&0&iDyZ\Delta l&iDzZ\Delta l&0\\4Ax\Delta l&0&0&0&0&-4Az\Delta l&DxZ\Delta l&0&0&0&0&iDzZ\Delta l\\ 0&-4Ax\Delta l&4Ay\Delta l&0&0&0&0&iDxZ\Delta l&iDyZ\Delta l&0&0&0\\0&0&\frac{iDy\Delta l}{Z}&0&0&\frac{iDz\Delta l}{Z}&0&0&-4Ay\Delta l&0&0&4Az\Delta l\\0&\frac{iDx\Delta l}{Z}&0&0&\frac{-iDz\Delta l}{Z}&0&0&4Ax\Delta l&0&0&-4Az\Delta l&0\\ \frac{-iDx\Delta l}{Z}&0&0&\frac{-iDy\Delta l}{Z}&0&0&4Ax\Delta l&0&0&4Ay\Delta l&0&0}$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
PseudoInverse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 03.09.2007
Autor: luis52

Moin  Jtosik,

zunaecht einmal ein herzliches [willkommenmr]

Es gibt den folgenden Satz, der die Pseudoinverse in endlich vielen
Schritten ermittelt:

Sei $A$ eine Matrix vom Rang $r$.

1) Bestimme $B:=A'A$
2) Setze [mm] $C_1:=I$ [/mm] (Einheitsmatrix)
3) Bestimme [mm] $C_{j+1}=I(1/j)\mbox{tr}(C_jB)-C_jB$ [/mm] fuer $j=1,2,...,r-1$
4) Bestimme [mm] $rC_rA'/\mbox{tr}(C_rB)$. [/mm] Das ist die Pseudoinverse [mm] $A^\dagger$. [/mm]

Ferner gilt [mm] $C_{r+1}B=0$ [/mm] (Nullmatrix) und [mm] $\mbox{tr}(C_rB)\ne0$. [/mm]

Dieser Algorithmus hat mir schon manches Mal aus der Patsche geholfen.
Allerdings weiss ich nicht, ob er auch fuer Matrizen mit komplexen Zahlen
gilt...

lg
Luis


Bezug
                
Bezug
PseudoInverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mo 03.09.2007
Autor: Jtosik

Danke für die schnelle Antwort ;-)

Jedoch habe ich eine frage, meinst du mit A' die adjungierte Matrix? ;-(

Danke im Voraus für die Antwort



Bezug
                        
Bezug
PseudoInverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Mo 03.09.2007
Autor: luis52


> Danke für die schnelle Antwort ;-)
>  
> Jedoch habe ich eine frage, meinst du mit A' die
> adjungierte Matrix? ;-(
>  

>

Ja, in diesem Sinne:

[]http://de.wikipedia.org/wiki/Adjungierte_Matrix

Fuer reelle Matrizen [mm] $A=(a_{ij})$ [/mm]  ist [mm] $A'=(a_{ji})$ [/mm] die Transponierte.


lg

Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]