matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPrüfungsvorbereitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Prüfungsvorbereitung
Prüfungsvorbereitung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prüfungsvorbereitung: zeichn. kurve berechne y' y''
Status: (Frage) beantwortet Status 
Datum: 14:01 Sa 05.08.2006
Autor: Furious_Dragon

Aufgabe
Gegeben ist die Parameterdarstellung einer Kurve
[-1,1]  -> IR²
        
t  ->   x(t) = 4 + 2t
          y(x) = 2+ 3t²

zeichnen sie die Kurve und berechnen sie y' und y'' für t=1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi kann mir mal bitte einer sagen wie man das rechnet?
werden einfach die werte von -1 bis 1 für t eingesetzt - glaubs ja irgendwie nich :(

und wie macht man y' und y'' einfach die funktionen y(x) ableiten
und wenn ja wie weil wenn ich dann für t - 1 einsetze dann steht da ja
y(x)=2+3t*1²=2+3 und dann ist y'=0 oder wie?

danke schon mal für eure antworten

gruß olli

        
Bezug
Prüfungsvorbereitung: Antwort (korr.)
Status: (Antwort) fehlerhaft Status 
Datum: 15:39 Sa 05.08.2006
Autor: Kuebi

Hallo du!

Also das ganze sollte wie folgt funktionieren...

Gegeben ist eine Kurve [mm] $[-1,1]\rightarrow \IR^{2}, t\mapsto [/mm] r(t)$ durch

[mm] r(t)=\vektor{x(t)\\y(t)}=\vektor{4+2t\\2+3t^{2}} [/mm]

Das Zeichnen erfolgt einfach dadurch, dass du für t einige Werte zwischen -1 und 1 einsetzt und entsprechend den Punkt dann in einem x-y-Koordinatensystem einträgst.

Bsp.: Für t=0 ist x(0)=4 und y(0)=2

Nun zur Ableitung:

Für die Ableitung einer Kurve in Parameterdarstellung gilt:

[mm] y'=\bruch{\dot{y}}{\dot{x}} [/mm] und
[mm] y''=\bruch{\dot{x}\ddot{y}-\ddot{x}\dot{y}}{\dot{x}^{3}} [/mm]

In unserem Beispiel gilt:

[mm] \dot{r(t)}=\vektor{\dot{x}(t)\\ \dot{y}(t)}=\vektor{6\\2+6t} [/mm]

Korrektur: [mm] =\vektor{2\\2+6t} [/mm]

und folglich

[mm] y'=\bruch{\dot{y}}{\dot{x}}=\bruch{2+6t}{6} [/mm]

Korrektur: [mm] =\bruch{2+6t}{2} [/mm] = 1+3t

Analog erhält man y''.

Wie du nun siehst, ist y' für t=1 nicht 0, sondern 4.

Ich hoffe mal ich konnte dir etwas weiterhelfen!

Viel Spaß noch beim Rechnen!

Lg, Kübi
:-)

Bezug
                
Bezug
Prüfungsvorbereitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Di 15.08.2006
Autor: rabenau

Hallo, ich hänge mich mal hier dran, weil ich die gleiche Aufgabe hab und nicht weiterkam.

die Antwort hat mir schon geholfen, wollte nur noch mal rückfragen, ob ich richtig weitergerechnet habe.

Ich hab für y'' raus:

y'' =  [mm] \bruch{6*8-0*(2+6t)}{6^{3}} [/mm]

d.h. für t=1:

y'' =  [mm] \bruch{2}{9} [/mm]

Ist das richtig?

Gruß
Britta





Bezug
                        
Bezug
Prüfungsvorbereitung: Fehlerhäufung
Status: (Antwort) fertig Status 
Datum: 08:02 Di 15.08.2006
Autor: statler

Hallo Britta!

> die Antwort hat mir schon geholfen, wollte nur noch mal
> rückfragen, ob ich richtig weitergerechnet habe.
>  
> Ich hab für y'' raus:
>  
> y'' =  [mm]\bruch{6*8-0*(2+6t)}{6^{3}}[/mm]
>
> d.h. für t=1:
>  
> y'' =  [mm]\bruch{2}{9}[/mm]

Es ist doch für x(t) = 4 + 2t  [mm] \dot{x}(t) [/mm] = 2,
und dann ist ganz nach der Formel
y''(1) =  [mm] \bruch{2*6-0*(2+6*1)}{2^{3}} [/mm] = [mm] \bruch{3}{2} [/mm]

Gruß aus HH-Harburg
Dieter



Bezug
                                
Bezug
Prüfungsvorbereitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Di 15.08.2006
Autor: rabenau

Hallo Dieter


> Es ist doch für x(t) = 4 + 2t  [mm]\dot{x}(t)[/mm] = 2,
> und dann ist ganz nach der Formel
>  y''(1) =  [mm]\bruch{2*6-0*(2+6*1)}{2^{3}}[/mm] = [mm]\bruch{3}{2}[/mm]
>  

Arghh, natürlich, hab mit der falschen Ableitung weitergerechnet, war wohl schon etwas spät gestern.

Gruß Britta

Bezug
                                
Bezug
Prüfungsvorbereitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Di 15.08.2006
Autor: rabenau

Ich bins noch mal, was mir gerade aufgefallen ist, bzw. wo ich gerade nen Brett vorm Kopf hab (wahrscheinlich zu lange gelernt heute):

Die Ausgangsfunktion war doch:

> [mm]r(t)=\vektor{x(t)\\y(t)}=\vektor{4+2t\\2+3t^{2}}[/mm]

  
Und die (korrigierte) Ableitung:


> [mm]\dot{r(t)}=\vektor{\dot{x}(t)\\ \dot{y}(t)}=\vektor{6\\2+6t}[/mm]
>  
> Korrektur: [mm]=\vektor{2\\2+6t}[/mm]

Warum bleibt bei [mm] \dot{y} [/mm] die 2 bei der Ableitung stehen, müsste die nicht eigentlich auch wegfallen?

Gruß
Britta

Bezug
                                        
Bezug
Prüfungsvorbereitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Mi 16.08.2006
Autor: leduart

Hallo Britta
Du hast natürlich recht, die 2 bei [mm] \dot{y} [/mm] ist falsch!
Gruss leduart

Bezug
                                                
Bezug
Prüfungsvorbereitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:10 Mo 21.08.2006
Autor: rabenau

Hallo leduart

Sorry, das ich mich erst so spät noch mal melde, stecke mitten im Prüfungsstreß.


>  Du hast natürlich recht, die 2 bei [mm]\dot{y}[/mm] ist falsch!


Da bin ich ja froh, das ich doch noch ableiten kann :)

Gruß
Britta



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]