matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenPrüfung auf lineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Prüfung auf lineare Abbildung
Prüfung auf lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prüfung auf lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 So 11.01.2009
Autor: LiN24

Aufgabe
Gegeben sind folgende Abbildungen:

1) f: [mm] \IR³ \to \IR², (x_{1}, x_{2}, x_{3})^{T} \mapsto (x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, )^{T} [/mm]

2) f: [mm] \IR² \to \IR²: (a,b)^{T} \mapsto (ab,a+b)^{T} [/mm]

3) f: [mm] \IR³ \to \IR³, [/mm] f [mm] \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] x_{1} \vektor{1 \\ 2 \\ 0} [/mm] + [mm] x_{2} \vektor{0 \\ 3 \\ 0} [/mm] + [mm] x_{3} \vektor{0 \\ 0 \\ 2} [/mm]

4) f: [mm] \IR² \to \IR², (a,b)^{T} \mapsto (3a+1,4b+a+1)^{T} [/mm]

5) f: [mm] \IR \to \IR², [/mm] (x) [mm] \mapsto (x,2x)^{T} [/mm]

6) f: [mm] \IR² \to \IR³, \vektor{y_{1} \\ y_{2} \\ y_{3}} [/mm] = [mm] \vektor{1 0 0 \\ 0 3 0 \\ 2 1 0} \vektor{x_{1} \\ 2x_{1} \\ 0} [/mm]

Welche der Abbildungen sind linear?

Hallo,

ich weiß jetzt nicht, wie ich allgemein die Aufgabe lösen kann, ich hab mir bis jetzt überlegt, dass Abbildungen linear sind, wenn gilt:

f: V [mm] \to [/mm] W

i) f(x+y) = f(x) + f(y) für alle x,y [mm] \in [/mm] V
ii) f( [mm] \lambda [/mm] x) = [mm] \lambda [/mm] f(x) für alle x [mm] \in [/mm] V und [mm] \lambda \in [/mm] K

weiterhin: f(0) = 0

für 1) hab ich außerdem, dass Abbildungen linear sind, wenn man eine Matrix A [mm] \in K^{m x n} [/mm] findet mit f(x) = Ax für alle x [mm] \in K^n [/mm] (f: [mm] K^n \to K^m) [/mm]

       A = [mm] \pmat{ 1 & 1 & 1 \\ 0 & 1 & 1 } [/mm]


für 4) denke ich, dass es sich um eine Translation um 1 handelt, deshalb keine lineare Abbildung, da
    
      [mm] T_{a}(x) [/mm] = [mm] \pmat{ 3 & 0 \\ 1 & 4 } [/mm] + [mm] \pmat{ 1 \\ 1 } [/mm]

für 5) glaube ich, dass es eine lineare Abbildung ist, da [mm] \IR [/mm] in [mm] \IR² [/mm] eingebettet wird, bin mir aber wegen der Transponierung nicht sicher und weiß nicht, wie ich das aufschreiben soll

für 6) keine lineare Abbildung, da keine Matrix A [mm] \in K^{m x n} [/mm] ???

würde mich freuen, wenn mir jemand helfen könnte bei den anderen Aufgaben und mir sagen könnte, ob die anderen Lösungen richtig sind



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Prüfung auf lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 13.01.2009
Autor: kunzmaniac

Hiho,

Ich zeige Dir mal ganz allgemein anhand Aufgabe 1) wie das gehen sollte.
Richtig ist, du muss prüfen ob gilt:
    [mm] F(\lambda*v [/mm] + [mm] \mu*w) [/mm] = [mm] \lambda*F(v) [/mm] + [mm] \mu*F(w), \forall [/mm] v,w [mm] \in [/mm] V.
    F(0) = 0, ist nicht nötig, da F(0) = F(0*v) = 0*F(v) = 0, wenn obige Bedingung erfüllt.

Teil 1.
wir brauchen zwei Vektoren und zwei Skalare.
v = [mm] \vektor{v1 \\ v2 \\ v3}, [/mm] w = [mm] \vektor{w1 \\ w2 \\ w3}\in \IR^{3} [/mm] und [mm] \lambda, \mu \in \IR. [/mm]
[mm] F(\lambda [/mm] v + [mm] \mu [/mm] w) = [mm] \vektor{\lambda v1 + \mu w1 + \lambda v2 + \mu w2 + \lambda v3 + \mu w3 \\ \lambda v2 + \mu w2 + \lambda v3 + \mu w3} [/mm] = [mm] \vektor{\lambda (v1 + v2 + v3) \\ \lambda (v2 + v3)} [/mm] + [mm] \vektor{\mu (w1 + w2 + w3) \\ \mu (w2 + w3)} [/mm] = [mm] \lambda \vektor{v1 + v2 + v3 \\ v2 + v3} [/mm] + [mm] \mu \vektor{w1 + w2 + w3 \\ w2 + w3} [/mm] = [mm] \lambda [/mm] F(v) + [mm] \mu [/mm] F(w)
Da wir unsere Wahl der Vektoren/Skalare nicht eingeschränkt haben, gilt diese Gleichung für alle v,w und [mm] \lambda, \mu [/mm] wie oben.

Genauso geht es bei den anderen auch, evtl. kann man sich das auch sparen, wenn man ein einziges Gegenbeispiel findet.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]