matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungPrüfe, ob
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Prüfe, ob
Prüfe, ob < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prüfe, ob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 So 05.04.2009
Autor: learningboy

die Summe einer stetigen Funktion und einer unstetigen Funktion ist stets unstetig.

f(x) stetig

g(x) unstetig

h(x) = f(x) + g(x) = unstetig

stetig + unstetig = unstetig

nur wie geht es weiter?

danke!

        
Bezug
Prüfe, ob: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 So 05.04.2009
Autor: angela.h.b.


> die Summe einer stetigen Funktion und einer unstetigen
> Funktion ist stets unstetig.
>  
> f(x) stetig
>  
> g(x) unstetig
>  
> h(x) = f(x) + g(x) = unstetig
>  
> stetig + unstetig = unstetig
>  
> nur wie geht es weiter?
>  
> danke!


Hallo,

Gratulation! Wie Du die Aufgabenstellung vorstellst, das ist ja wirklich ein Meisterwerk...

Wahrscheinlich sollst Du zeigen oder widerlegen, daß die Summe einer stetigen und einer unstetigen Funktion stets eine unstetige Funktion ergibt,  und dem, was Du sonst noch so schreibst entnehme ich, daß Deine Behauptung lautet: man erhält immer eine unstetige Funktion.

Und mit "wie geht's weiter" möchtest Du wohlfragen, wie der Beweis geht. Richtig?

Hattet Ihr schon, daß Kompositionen stetiger Funktionen stetig sind? In diesem Fall kannst Du den Beweis so führen:

nimm an, es wäre h(x) stetig, und zeige, daß das einen Widerspruch ergibt. betrachte hierzu h-f.

Gruß v. Angela

Bezug
                
Bezug
Prüfe, ob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:29 So 05.04.2009
Autor: learningboy

Entschuldigung, ich bin im Moment etwas durch den Wind, weil in weniger als 2 Wochen meine Abschlussprüfungen in Mathe anstehen :(

stetig + unstetig = unstetig

ich nehme jetzt an, dass h(x) stetig wäre

stetig + unstetig = stetig

dsann ziehe ich stetig ab

unstetig = stetig - stetig

das ist ein widerspruch, weil egal wie ich zwei stetige funktionen verknüpfe immer wieder eine stetige rauskommt.

plus, mal, durch und geteilt, wenn zwei mal eine stetige funktion da steht kommt auch wieder eine stetige funktion raus?!

Danke!!

Bezug
                        
Bezug
Prüfe, ob: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 So 05.04.2009
Autor: angela.h.b.


> Entschuldigung, ich bin im Moment etwas durch den Wind,
> weil in weniger als 2 Wochen meine Abschlussprüfungen in
> Mathe anstehen :(
>  
> stetig + unstetig = unstetig
>
> ich nehme jetzt an, dass h(x) stetig wäre
>  
> stetig + unstetig = stetig
>  
> dsann ziehe ich stetig ab
>  
> unstetig = stetig - stetig
>  
> das ist ein widerspruch, weil egal wie ich zwei stetige
> funktionen verknüpfe immer wieder eine stetige rauskommt.

Hallo,

ja, das ist die richtige Argumentation.

Gruß v. Angela

>  
> plus, mal, durch und geteilt, wenn zwei mal eine stetige
> funktion da steht kommt auch wieder eine stetige funktion
> raus?!
>  
> Danke!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]