matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenProjektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Projektor
Projektor < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 24.06.2008
Autor: ereger

Aufgabe
Es sei V ein K-Vektorraum. Eine lineare Abbildung f : V [mm] \to [/mm] V heißt Projektor, wenn gilt
   f [mm] \circ [/mm] f = f ( d.h f(f(x))=f(x) für alle x [mm] \in [/mm] V ).
1.Man zeige: Ist f : V [mm] \to [/mm] V ein Projektor, so ist auch  [mm] id_{V} [/mm] - f : V [mm] \to [/mm] V ,
   x [mm] \mapsto [/mm] x - f(x) ein Projektor
2.Man zeige: Ist f : V [mm] \to [/mm] V ein Projektor,so gilt für die Untervektorräume ker f und f(V) von V, dass ker f [mm] \cap [/mm] f(V) = {0} , V=f(V) + ker f

Hallo!
Könnte mir jemand vllt. Tip geben ob meine Überlegungen richtig sind bezüglich dieser Aufgabe!?

zu1.Aus definition ausgehend prüfe ich ob die neue Funktion [mm] id_{V} [/mm] - f auch ein Projektor ist, indem ich die Eigenschaft des Projektors nachprüfe:

[mm] (id_{V} [/mm] - f) [mm] \circ [/mm] (x - [mm] f(x))=id_{V}(x [/mm] - f(x)) - f(x - [mm] f(x))=id_{V}(x) [/mm] - [mm] id_{V}(f(x))-f(x) [/mm] + [mm] \underbrace{ f(f(x))}_{=f(x)} =id_{V}(x) [/mm] - [mm] id_{V}(f(x))= [/mm] x - f(x)

zu2.Wie ich das verstehe Bild und kern haben nur einen Punkt wo sie sich schneiden, nämlich Koordinatenursprung oder Nullraum?muss man hier zeigen dass sowohl im kern als auch im bild nullraum {0} enthalten ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Projektor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Di 24.06.2008
Autor: djmatey


> Es sei V ein K-Vektorraum. Eine lineare Abbildung f : V [mm]\to[/mm]
> V heißt Projektor, wenn gilt
> f [mm]\circ[/mm] f = f ( d.h f(f(x))=f(x) für alle x [mm]\in[/mm] V ).
>  1.Man zeige: Ist f : V [mm]\to[/mm] V ein Projektor, so ist auch  
> [mm]id_{V}[/mm] - f : V [mm]\to[/mm] V ,
> x [mm]\mapsto[/mm] x - f(x) ein Projektor
>  2.Man zeige: Ist f : V [mm]\to[/mm] V ein Projektor,so gilt für die
> Untervektorräume ker f und f(V) von V, dass ker f [mm]\cap[/mm] f(V)
> = {0} , V=f(V) + ker f
>  Hallo!

Hallo! :-)

>  Könnte mir jemand vllt. Tip geben ob meine Überlegungen
> richtig sind bezüglich dieser Aufgabe!?
>  
> zu1.Aus definition ausgehend prüfe ich ob die neue Funktion
> [mm]id_{V}[/mm] - f auch ein Projektor ist, indem ich die
> Eigenschaft des Projektors nachprüfe:
>  
> [mm](id_{V}[/mm] - f) [mm]\circ[/mm] (x - [mm]f(x))=id_{V}(x[/mm] - f(x)) - f(x -
> [mm]f(x))=id_{V}(x)[/mm] - [mm]id_{V}(f(x))-f(x)[/mm] + [mm]\underbrace{ f(f(x))}_{=f(x)} =id_{V}(x)[/mm]
> - [mm]id_{V}(f(x))=[/mm] x - f(x)

richtig

>  
> zu2.Wie ich das verstehe Bild und kern haben nur einen
> Punkt wo sie sich schneiden, nämlich Koordinatenursprung
> oder Nullraum?muss man hier zeigen dass sowohl im kern als
> auch im bild nullraum {0} enthalten ist?

Das ist klar, weil f linear ist, also f(0)=0 gilt. Somit ist die 0 in beiden enthalten. Zu zeigen ist, dass nicht noch mehr Elemente im Schnitt liegen.
Dazu wähle ein c [mm] \in [/mm] ker(f) [mm] \cap [/mm] f(V)
Wegen c [mm] \in [/mm] f(V) existiert a [mm] \in [/mm] V mit f(a) = c und
wegen c [mm] \in [/mm] ker(f) gilt f(c) = 0
und damit gilt
c = f(a) = f(f(a)) = f(c) = 0
Damit ist der erste Teil von 2) gezeigt.
Vielleicht kommst Du jetzt alleine weiter!?

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


LG djmatey

Bezug
                
Bezug
Projektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Di 24.06.2008
Autor: ereger

Vielen Dank für den Tip!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]