matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesProjektionen auf konvexe Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Projektionen auf konvexe Menge
Projektionen auf konvexe Menge < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektionen auf konvexe Menge: Idee
Status: (Frage) überfällig Status 
Datum: 15:30 Do 12.07.2018
Autor: bongobums

Ich habe eine Variationsungleichung erster Art gegeben. Für einen festen Vektor [mm] $a\in\mathbb{R}^n$ [/mm] und eine symmetrische, positiv definite Matrix [mm] $A\in\mathbb{R}^{n\times n}$ [/mm] soll in Abhängigkeit von [mm] $u\in\mathbb{R}^n$ [/mm] ein [mm] $y\in\mathcal{K}:=\{v\in\mathbb{R}^n:v\leq a\}$ [/mm] gefunden werden, sodass

[mm] $$\langle Ay,v-y\rangle \geq \langle u,v-y\rangle\ \forall v\in\mathcal{K}\iff\langle u-Ay,v-y\rangle\leq0\ \forall v\in\mathcal{K}$$ [/mm]

erfüllt ist. Diese Variationsungleichung ist äquivalent zum Problem

[mm] $$\operatorname{argmin}\limits_{y\in\mathcal{K}}\frac12\langle [/mm] y, [mm] Ay\rangle-\langle u,y\rangle,$$ [/mm]

welches aufgrund von strenger Konvexität, radialer Unbeschränktheit und Unbeschränktheit der zulässigen Menge eine eindeutige Lösung besitzt. Das bedeutet, wir können einen Lösungsoperator [mm] $S:\mathbb{R}^n\rightarrow\mathbb{R}^n, u\mapsto [/mm] S(u)=y$ für das obige Problem definieren.
Für [mm] $A=I_n$ [/mm] erhalten wir das Standard-Projektionsproblem auf ein konvexes Polyeder im [mm] $\mathbb{R}^n$. [/mm] Dessen Lösung lässt sich relativ einfach geschlossen angeben:

[mm] $$y_i=S(u)_i=\begin{cases}u_i, & u_i\leq a_i \\ a_i, & u_i>a_i\end{cases}\quad \forall [/mm] i=1,...,n$$

Nun suche ich die Lösung für [mm] $A\neq I_n$. [/mm] Nach Aussage meines Profs bleibt die Projektionseigenschaft erhalten, wenn man sich vorstelle, dass $A$ sozusagen eine zusätzliche Norm induziert. Ich kann grundsätzlich schon erahnen, wie das gemeint sein könnte, jedoch finde keine sinnvolle Umformung sodass ich auf einen Ausdruck wie z.B.

[mm] $$\operatorname{argmin}\limits_{y\in\mathcal{K}}\langle y-u,A(y-u)\rangle$$ [/mm]

komme. Das heißt ich sehe nicht, wie ich die Variationsungleichung auf ein Projektionsproblem zurückführen kann, dessen Lösung ich einfach ablesen kann. Gibt es zu einer solchen allgemeinen Ungleichung eigentlich eine bildliche Darstellung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Projektionen auf konvexe Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 14.07.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]