matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikProjektion des Vektorfeldes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Projektion des Vektorfeldes
Projektion des Vektorfeldes < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion des Vektorfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Do 02.11.2006
Autor: patro

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo erstmal,
bin mir irgendwie nicht ganz sicher was ich da machen soll-.-

Danke mal vorab..

Die Aufgabe:
Wie gross ist im Punkt (x,y,z)=(1,1,1) die Projektion des Vektorfeldes A(r) [<-beides Vektoren] = (x²+y²,x²-y²,z²) auf die Richtung von B[Vektor] = (1,Wurzel aus 10,3)?

        
Bezug
Projektion des Vektorfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 02.11.2006
Autor: Event_Horizon

Hallo!

Erstmal ein kleiner Tipp: Das Setzen von Formeln ist hier sehr einfach.

\wurzel{3} ergibt [mm] \wurzel{3} [/mm]

und

\vektor{x\\y\\z} ergibt [mm] \vektor{x\\y\\z} [/mm]


Zu deiner Frage:


Die Projektion eines Vektors [mm] \vec{a} [/mm] auf einen anderen [mm] \vev{b} [/mm] ergibt sich aus

[mm] $\bruch{\vec a * \vec b}{\vec b^2}* \vec [/mm] b$

Hilft dir das?

Bezug
                
Bezug
Projektion des Vektorfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 Do 02.11.2006
Autor: patro

naja..leider nicht wirklich..

aber danke für den tipp (-:

Bezug
                        
Bezug
Projektion des Vektorfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Do 02.11.2006
Autor: Event_Horizon

OK, dann etwas mehr:

Du hast den Punkt gegeben. Dessen x-,y- und z-Wert setzt du un das Feld ein, das ergibt einen Vektor - den Feldvektor. Dieser Feld soll auf den Vektor [mm] \vec{B} [/mm] projiziertwerden. Also nimmst du meine Formel, setzt für [mm] \vec{a} [/mm] den Feldvektor ein, für [mm] \vec{b} [/mm] eben den anderen, und rechnest das aus. Das ist alles.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]