Proj. Limes nicht rechtsexakt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:27 Mi 11.05.2011 | Autor: | Lippel |
Aufgabe | Gegeben sei eine exakte Sequenz $0 [mm] \to (F_i, f_{ij}) \to (G_i, g_{ij}) \to (H_i, h_{ij}) \to [/mm] 0$ projektiver Systeme (d.h. $0 [mm] \to F_i \to G_i \to H_i \to [/mm] 0$ ist exakt für alle i [mm] \in [/mm] I).
Man zeige, dass die Sequenz $0 [mm] \to \underleftarrow{lim}\;F_i \to \underleftarrow{lim}\; G_i \to \underleftarrow{lim}\; H_i$ [/mm] ebenfalls exakt ist. [mm] $\underleftarrow{lim}\;$ [/mm] ist jedoch nicht rechtsexakt, d.h [mm] $\psi: \underleftarrow{lim}\;G_i \to \underleftarrow{lim}\;H_i$ [/mm] ist i.A. nicht surjektiv. |
Hallo,
ich konnte die Exaktheit für die Sequenz der projektiven Limiten zeigen, hänge aber am Gegenbeispiel, das zeigt, dass [mm] $\underleftarrow{lim}$ [/mm] nicht rechtsexakt ist. Ich habe auch keine Ahnung wie ich ran gehen soll. Ich habe gelesen dass es bei Gegenbeipiel um projektive Systeme unendlicher Gruppen handeln muss. Bisher haben wir aber eigentlich nur dass System [mm] $(\IZ/n\IZ)_{n \in \IN}$ [/mm] betrachtet. Weiß jemand zufällig ein Gegenbeispiel oder vielleicht wie man an die Sache rangehen muss?
LG Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:39 Do 12.05.2011 | Autor: | felixf |
Moin Lippel,
> Gegeben sei eine exakte Sequenz [mm]0 \to (F_i, f_{ij}) \to (G_i, g_{ij}) \to (H_i, h_{ij}) \to 0[/mm]
> projektiver Systeme (d.h. [mm]0 \to F_i \to G_i \to H_i \to 0[/mm]
> ist exakt für alle i [mm]\in[/mm] I).
>
> Man zeige, dass die Sequenz [mm]0 \to \underleftarrow{lim}\;F_i \to \underleftarrow{lim}\; G_i \to \underleftarrow{lim}\; H_i[/mm]
> ebenfalls exakt ist. [mm]\underleftarrow{lim}\;[/mm] ist jedoch
> nicht rechtsexakt, d.h [mm]\psi: \underleftarrow{lim}\;G_i \to \underleftarrow{lim}\;H_i[/mm]
> ist i.A. nicht surjektiv.
>
> ich konnte die Exaktheit für die Sequenz der projektiven
> Limiten zeigen, hänge aber am Gegenbeispiel, das zeigt,
> dass [mm]\underleftarrow{lim}[/mm] nicht rechtsexakt ist. Ich habe
> auch keine Ahnung wie ich ran gehen soll. Ich habe gelesen
> dass es bei Gegenbeipiel um projektive Systeme unendlicher
> Gruppen handeln muss. Bisher haben wir aber eigentlich nur
> dass System [mm](\IZ/n\IZ)_{n \in \IN}[/mm] betrachtet. Weiß jemand
> zufällig ein Gegenbeispiel oder vielleicht wie man an die
> Sache rangehen muss?
hier findet sich ein Gegenbeispiel: nimm [mm] $F_i [/mm] = [mm] p^i \IZ$, $G_i [/mm] = [mm] \IZ$ [/mm] und [mm] $H_i [/mm] = [mm] \IZ [/mm] / [mm] p^i \IZ$ [/mm] fuer $i [mm] \in \IN$ [/mm] (hier ist $p$ eine fest gewaehlte Primzahl). Fuer jedes $i$ ist $0 [mm] \to F_i \to G_i \to H_i \to [/mm] 0$ exakt, allerdings ist [mm] $\varprojlim_i G_i \to \varprojlim_i H_i$ [/mm] offenbar nicht surjektiv, da der Kokern isomorph zu [mm] $\IZ_p [/mm] / [mm] \IZ$ [/mm] ist (wobei [mm] $\IZ_p$ [/mm] die $p$-adischen Zahlen sind).
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:47 Do 12.05.2011 | Autor: | Lippel |
Vielen, vielen Dank Felix.
LG Lippel
|
|
|
|