Produkttopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Hallo!
Seien X,Y topologische Räume, und man betrachte X x Y mit der Produktopologie (Außerdem X, Y nicht-leer).
Ich habe nun folgende Überlegungen angestrengt, und würde um Überprüfung deren Richtigkeit bitten:
Es seien U eine offene Menge in X, V eine offene Menge in Y.
Es gilt (?): U x V = (X x Y) [mm] \backslash [/mm] ((X [mm] \backslash [/mm] U) x (Y [mm] \backslash [/mm] V))
Denn die einzigen Funktionen f [mm] \in [/mm] X x Y, die in U x V nicht enthalten sind, sind solche, deren Bild in X nicht in U liegt UND deren Bild in Y nicht in V liegt.
Unter der Annahme, dass die oben angeführte Gleichung stimmt, wie verhält es sich dann falls U = X ? Wäre dann ((X [mm] \backslash [/mm] X) x (Y [mm] \backslash [/mm] V)) gar nicht definiert? Oder ist es legitim, Funktionen in X x Y zu betrachten, deren Bild in X ein leeres ist?
Danke für alle Antworten,
mfg
Ich habe die Frage in keinem anderen Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:16 Di 29.01.2008 | Autor: | felixf |
Hallo
> Seien X,Y topologische Räume, und man betrachte X x Y mit
> der Produktopologie (Außerdem X, Y nicht-leer).
>
> Ich habe nun folgende Überlegungen angestrengt, und würde
> um Überprüfung deren Richtigkeit bitten:
>
> Es seien U eine offene Menge in X, V eine offene Menge in
> Y.
>
> Es gilt (?): U x V = (X x Y) [mm]\backslash[/mm] ((X [mm]\backslash[/mm]
> U) x (Y [mm]\backslash[/mm] V))
Das ist eine rein mengentheoretische Aussage, dafuer brauchst du keine Topologie. Die Aussage ist so, wie sie da steht, im Allgemeinen falsch. Wenn etwa $u [mm] \in [/mm] U$ und $y [mm] \in [/mm] Y [mm] \setminus [/mm] V$ ist, dann ist $(u, y) [mm] \not\in [/mm] U [mm] \times [/mm] V$, jedoch ist $(u, y)$ auch nicht in $(X [mm] \setminus [/mm] U) [mm] \times [/mm] (Y [mm] \setminus [/mm] V)$ und somit liegt $(u, y)$ in $(X [mm] \times [/mm] Y) [mm] \setminus [/mm] ((X [mm] \setminus [/mm] U) [mm] \times [/mm] (Y [mm] \setminus [/mm] V))$. Damit ist die Menge $(X [mm] \times [/mm] Y) [mm] \setminus [/mm] ((X [mm] \setminus [/mm] U) [mm] \times [/mm] (Y [mm] \setminus [/mm] V))$ echt groesser als $U [mm] \times [/mm] V$. (Also dass sie $U [mm] \times [/mm] V$ enthaelt bekommt man schnell hin.) Es sei denn natuerlich man hat so patologische Faelle wie $U = X$, $V = Y$ oder $U = [mm] \emptyset [/mm] = V$.
> Denn die einzigen Funktionen f [mm]\in[/mm] X x Y, die in U x V
> nicht enthalten sind, sind solche, deren Bild in X nicht in
> U liegt UND deren Bild in Y nicht in V liegt.
Was genau willst du hier mit Funktionen? Es geht um Punkte in den topologischen Raeumen. Ob diese nun Funktionen sind (du also Funktionsraeume betrachtest) oder nicht spielt keine Rolle. Insbesondere macht es hier keinen Sinn, vom Bild einer Funktion in $X [mm] \times [/mm] Y$ zu reden.
Oder betrachtest du $X [mm] \times [/mm] Y$ als die Menge der Funktionen $f : [mm] \{ 1, 2 \} \to [/mm] X [mm] \cup [/mm] Y$ mit $f(1) [mm] \in [/mm] X$ und $f(2) [mm] \in [/mm] Y$?
Anyway, wenn man deine obige Aussage dahin uebersetzt, dass es um Punkte aus $X [mm] \times [/mm] Y$ geht, dann ist sie falsch, da du hinten kein UND, sondern ein ODER hast!
Es gilt naemlich
$(X [mm] \times [/mm] Y) [mm] \setminus [/mm] ((X [mm] \setminus [/mm] U) [mm] \times [/mm] (Y [mm] \setminus [/mm] V)) = [mm] \{ (x, y) \in X \times Y \mid (x, y) \not\in (X \setminus U) \times (Y \setminus V) \} [/mm] = [mm] \{ (x, y) \in X \times Y \mid \neg ((x, y) \in (X \setminus U) \times (Y \setminus V)) \} [/mm] = [mm] \{ (x, y) \in X \times Y \mid \neg (x \in (X \setminus U) \wedge y \in (Y \setminus V)) \} [/mm] = [mm] \{ (x, y) \in X \times Y \mid \neg (x \not\in U \wedge y \not\in V)) \} [/mm] = [mm] \{ (x, y) \in X \times Y \mid \neg(x \not\in U) \vee \neg(y \not\in V)) \} [/mm] = [mm] \{ (x, y) \in X \times Y \mid (x \in U) \vee (y \in V)) \}$, [/mm] und das ist offensichtlich nicht gleich $U [mm] \times [/mm] V$ (ausser in Spezialfaellen), sondern gleich $(U [mm] \times [/mm] Y) [mm] \cup [/mm] (X [mm] \times [/mm] V)$.
LG Felix
|
|
|
|
|
Danke für die Antwort, nachdem ich die Sache überschlafen hatte ist mir dann auch aufgefallen, dass das falsch ist.
Und ja, wir haben X x Y als Funktionenraum definiert.
Wirklich vielen Dank für Deine Hilfe, insbesondere für die Häufigkeit dieser.
|
|
|
|