matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungProduktsummen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Produktsummen
Produktsummen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktsummen: 2 Aufgaben
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 16.01.2007
Autor: Nightwalker12345

Aufgabe
Hallo,

haben mehrere Aufgaben bekommen, und komme bei einer nicht weiter...

1) Welche Gerade mit der Gleichung g(x)=c schließt mit der Parabel f(x)=x² eine Fläche von 36 (FE) ein?

Mein Ansatz:


g(x) = f(x)

dann kämen ja die Grenzen: +/-  [mm] \wurzel{c} [/mm]


dann:

[mm] \integral_{- \wurzel{c}}^ {\wurzel{c}}{g(x)-f(x) dx} [/mm]


aber wie rechne ich weiter??


wäre nett, wenn jemand das beantworten würde...

danke


        
Bezug
Produktsummen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Di 16.01.2007
Autor: XPatrickX


> Hallo,
>  
> haben mehrere Aufgaben bekommen, und komme bei einer nicht
> weiter...
>  
> 1) Welche Gerade mit der Gleichung g(x)=c schließt mit der
> Parabel f(x)=x² eine Fläche von 36 (FE) ein?
>  
> Mein Ansatz:
>  
>
> g(x) = f(x)
>  
> dann kämen ja die Grenzen: +/-  [mm]\wurzel{c}[/mm]
>  
>
> dann:
>  
> [mm]\integral_{- \wurzel{c}}^ {\wurzel{c}}{g(x)-f(x) dx}[/mm]
>  
>
> aber wie rechne ich weiter??
>  
>
> wäre nett, wenn jemand das beantworten würde...
>  
> danke
>  

Hallo,
Dein Ansatz stimmt bisher komplett, du musst nur noch das Integral gleich [mm] \pm [/mm] 36 (das Integral kann auch negativ werden, Flächen sind allerdings immer positiv) setzen, denn das Ergebnis kennst du ja schon.

Jetzt mach doch einfach mal weiter:

[mm] \integral_{- \wurzel{c}}^ {\wurzel{c}}{g(x)-f(x) dx} [/mm] = [mm] \pm36 [/mm]
[mm] \integral_{- \wurzel{c}}^ {\wurzel{c}}{c-x^{2} dx}=\pm36 [/mm]
[mm] [cx-\bruch{1}{3}x^{3}]\vmat{ - \wurzel{c} \\ \wurzel{c} } [/mm] = [mm] \pm36 [/mm]

Nun brauchst du nur noch die Grenzen einsetzen und das ganze nach c auflösen...

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]