matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungProduktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Produktregel
Produktregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:59 Di 30.11.2010
Autor: eistee03

Aufgabe
Differenzieren Sie f durch Anwendung der Produktregel.

a) [mm] f(x)=(x^2+1)*(x^2-1) [/mm]

b) [mm] f(x)=(ax+b)*(1-x^2) [/mm]

c) [mm] f(x)=(x+1)*\bruch{1}{x} [/mm] ; x ungleich 0

Guten Abend!

Morgen ist der grosse Tag der Matheklausur! Und ich bin gerade dabei einen Test aus unserem Buch zu machen, schon sehe ich das erste Problem: ich weiss zwar wie ich die Produktregel anwende, aber komme auf kein Ergebnis, weil ich unterwegs stecken bleibe!

Also..

Die Produktregel lautet: f'(x)=u'(x)*v'(x) + v'(x)*u(x)

zur Aufgabe a)

[mm] f(x)=(x^2+1)*(x^2-1) [/mm]
[mm] f'(x)=(2x*(x^2-1)) [/mm] + [mm] (2x*(x^2+1) [/mm]
     = ???????

zur Aufgabe b)

[mm] f(x)=(ax+b)*(1-x^2) [/mm]
[mm] f'(x)=2x*a*(1-x^2)+2x*(ax+b) [/mm]
     = ???????

zur Aufgabe c)

[mm] f(x)=(x+1)*\bruch{1}{x} [/mm]
[mm] f'(x)=1*\bruch{1}{x}+\bruch{-1}{x^2}*(x+1) [/mm]

        
Bezug
Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 30.11.2010
Autor: abakus


> Differenzieren Sie f durch Anwendung der Produktregel.
>  
> a) [mm]f(x)=(x^2+1)*(x^2-1)[/mm]
>  
> b) [mm]f(x)=(ax+b)*(1-x^2)[/mm]
>  
> c) [mm]f(x)=(x+1)*\bruch{1}{x}[/mm] ; x ungleich 0
>  Guten Abend!
>  
> Morgen ist der grosse Tag der Matheklausur! Und ich bin
> gerade dabei einen Test aus unserem Buch zu machen, schon
> sehe ich das erste Problem: ich weiss zwar wie ich die
> Produktregel anwende, aber komme auf kein Ergebnis, weil
> ich unterwegs stecken bleibe!
>  
> Also..
>  
> Die Produktregel lautet: f'(x)=u'(x)*v'(x) + v'(x)*u(x)
>  
> zur Aufgabe a)
>  
> [mm]f(x)=(x^2+1)*(x^2-1)[/mm]
>  [mm]f'(x)=(2x*(x^2-1))[/mm] + [mm](2x*(x^2+1)[/mm]
>       = ???????

Hallo,
Entweder:
2x ausklammern (führt auf 2x [mm] *(x^2-1 [/mm] + [mm] x^2+1), [/mm] was sich in der Klammer weiter vereinfachen lässt
Oder
[mm] 2x*(x^2-1) [/mm] ausmultiplizieren
[mm] 2x*(x^2+1) [/mm] ebenfalls ausmultiplizieren
beide Ergebnisse addieren.
Das Durchspielen beider Varianten ist eine nützliche Übung (am Ende muss jeweils das Gleiche rauskommen).
Gruß Abakus

>  
> zur Aufgabe b)
>  
> [mm]f(x)=(ax+b)*(1-x^2)[/mm]
>  [mm]f'(x)=2x*a*(1-x^2)+2x*(ax+b)[/mm]

Die Ableitung ist völlig falsch.

>       = ???????
>  
> zur Aufgabe c)
>  
> [mm]f(x)=(x+1)*\bruch{1}{x}[/mm]
>  [mm]f'(x)=1*\bruch{1}{x}+\bruch{-1}{x^2}*(x+1)[/mm]  


Bezug
                
Bezug
Produktregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Di 30.11.2010
Autor: eistee03

Danke für die schnelle Hilfe!

Ich habe nun die Aufgabe a) wie folgt gelöst:

f'(x) = [mm] 2x*(x^2-1)+2x*(x^2+1) [/mm]
= [mm] 2x*(x^2-1+x^2+1) [/mm]
= [mm] 2x*(2x^2) [/mm] = [mm] 4x^3 [/mm]

Bezug
        
Bezug
Produktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 30.11.2010
Autor: eistee03

Aufgabe
f(x) = (ax+b) * [mm] (1-x^2) [/mm]

Zu dem b teil :)

f(x) = (ax+b) * [mm] (1-x^2) [/mm]

f'(x) = a * [mm] (1-x^2) [/mm] + 2x * (ax+b)

       = a - [mm] ax^2 [/mm] + [mm] 2ax^2 [/mm] + 2bx

       = a + [mm] ax^2 [/mm] + 2bx

       = [mm] 2ax^2 [/mm] + 2bx

       = 2x (ax+b)

Es waere nett wenn mir noch jemand bestaetigen könnte, ob dies richtig ist?

Vielen Dank!!

Bezug
                
Bezug
Produktregel: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 19:28 Di 30.11.2010
Autor: MathePower

Hallo eistee03,

> f(x) = (ax+b) * [mm](1-x^2)[/mm]
>  
> Zu dem b teil :)
>  f(x) = (ax+b) * [mm](1-x^2)[/mm]
>  
> f'(x) = a * [mm](1-x^2)[/mm] + 2x * (ax+b)


Hier muss es doch heissen:

[mm]f'(x) = a * (1-x^2) \red{-}2x * (ax+b)[/mm]


>  
> = a - [mm]ax^2[/mm] + [mm]2ax^2[/mm] + 2bx
>
> = a + [mm]ax^2[/mm] + 2bx
>  
> = [mm]2ax^2[/mm] + 2bx
>  
> = 2x (ax+b)
>  
> Es waere nett wenn mir noch jemand bestaetigen könnte, ob
> dies richtig ist?
>  
> Vielen Dank!!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]