matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenProduktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Produktregel
Produktregel < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktregel: Wurzeladdition
Status: (Frage) beantwortet Status 
Datum: 16:15 Fr 22.05.2009
Autor: Bolek

[mm] f(x)=x\wurzel{x}=\wurzel{x}\*\bruch{x}{2\wurzel{x}}=\bruch{3}{2}\wurzel{x} [/mm]

Es soll die Produktregel angewendet werden, das ist insoweit kein Problem.
Ich verstehe nur nicht wie man in dieser Aufgabe auf das Endergebnis kommt.


        
Bezug
Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 22.05.2009
Autor: Al-Chwarizmi


>
> [mm]f(x)=x\wurzel{x}=\wurzel{x}\*\bruch{x}{2\wurzel{x}}=\bruch{3}{2}\wurzel{x}[/mm]
>  
> Es soll die Produktregel angewendet werden, das ist
> insoweit kein Problem.
>  Ich verstehe nur nicht wie man in dieser Aufgabe auf das
> Endergebnis kommt.



Was war denn wirklich die Aufgabe ?


Die Gleichungskette, wie sie hier steht, ist jedenfalls

      b u l l s h i t   . . .


LG      Al-Chw.

Bezug
                
Bezug
Produktregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Fr 22.05.2009
Autor: Bolek

kleiner Fehler hat sich eingeschliechen...

es soll natürlich [mm] \wurzel{x}+\bruch{x}{2\wurzel{x}} [/mm]  heißen, sorry !!!

Bezug
                        
Bezug
Produktregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Fr 22.05.2009
Autor: Al-Chwarizmi


> kleiner Fehler hat sich eingeschliechen...
>  
> es soll natürlich [mm]\wurzel{x}+\bruch{x}{2\wurzel{x}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  

> heißen, sorry !!!


Ja, und ich glaube, dass es sich nicht nur um diesen
"kleinen" Fehler handelt, sondern auch um den
GROSSEN Fehler, dass du offenbar die gegebene
Funktion und deren gesuchte Ableitungsfunktion
einander gleich setzt.

Deine gegebene Funktion ist

       $\ f(x)=x*\wurzel{x}$

Du sollst deren Ableitungsfunktion $\ f'(x)$ mit Hilfe
der Produktregel bestimmen.
Die Produktregel sagt:

      $\ f'(x)=(x)'*\wurzel{x}+x*(\wurzel{x})'$

      $\ f'(x)= 1* \wurzel{x}+x*\bruch{1}{2*\wurzel{x}}= \wurzel{x}+\bruch{1}{2}*\wurzel{x}}=\bruch{3}{2}*\wurzel{x}$  

Sag' jetzt bitte nicht, dass dein Ergebnis ja richtig
war !   Bei einer solchen Herleitung kommt es nicht
nur auf das korrekte Schlussergebnis an, sondern
ganz wesentlich auf die korrekte Darstellung des
Weges, der zum Ergebnis führt !

LG     Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]