matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenProduktionsmatrix aufstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Prozesse und Matrizen" - Produktionsmatrix aufstellen
Produktionsmatrix aufstellen < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktionsmatrix aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 So 11.03.2012
Autor: Apfelchips

Aufgabe
Gegeben ist die Inputmatrix [mm]a = \pmat{0,5 & 0,12 & 0,2\\ 0,4 & 0,5 & 0,1\\ 0 & 0,2 & 0,2}[/mm]

Durch die Einführung neuer Produktionstechniken ändern sich die Koeffizienten [mm]a_{12}[/mm] und [mm]a_{22}[/mm] der Inputmatrix A. Das Verhältnis der Produktion der Unternehmen W1, W2 und W3 beträgt dann [mm]x_{1} : x_{2} : x_{3}[/mm] = 5:6:2.
Die Nachfrage [mm]y = \pmat{75 & 70 & 20}^T[/mm] wird erwartet.

Ermitteln Sie die neue Inputmatrix und die Produktion der drei Unternehmen.




Ich habe die Gleichung [mm](E-A) * x = y[/mm] aufgestellt, daraus drei Gleichungen geformt und diese entsprechend aufgelöst. Leider nicht ganz erfolgreich:

[mm](E-A) * x = y[/mm] entspricht [mm]\pmat{0,5 & -a_{12} & -0,2\\ -0,4 & 1-a_{22} & -0,1\\ 0 & -0,2 & 0,8} * \vektor{5x_{1} \\ 6x_{1} \\ 2x_{1}} = \vektor{75 \\ 70 \\ 20}[/mm]

Bei (E-A) habe ich an den in der Aufgabenstellung angebenen stellen die Koeffizienten 0,12 und 0,5 durch Variablen gesetzt.

Die daraus resultierenden Gleichungen:

1. [mm]2,5x_{1} - a_{12}(6x_{1}) - 0,4x_{1} = 75[/mm]

2. [mm]-2x_{1} + (1 - a_{22}(6x_{1})) - 0,2x_{1} = 70[/mm]

3. [mm]-1,2x_{1} + 1,6x_{1} = 20[/mm]


Aus der 3. kann man direkt [mm]x_{1}[/mm] ermitteln: [mm]x_{1} = 50[/mm]


Mit diesem Wissen habe ich mich dann an die 1. Gleichung gewagt:

[mm]2,1*50 - 300a_{12} = 75[/mm]

[mm]- 300a_{12} = -30[/mm]

[mm]a_{12} = 0,1[/mm]


Und dann ging's an Gleichung Nummer 2:

[mm]-2,2*50 + (1-300a_{22}) = 70[/mm]

[mm]-110 + (1-300a_{22}) = 70[/mm]

[mm]1-300a_{22} = 180[/mm]

[mm]-300a_{22} = 179[/mm]


Und hier wird ziemlich offensichtlich, dass da etwas nicht passt: Der neue Koeffizient für [mm]a_{22}[/mm] kann nicht negativ sein.

Wo liegt mein Fehler? Ist evtl. schon der Ansatz falsch?


        
Bezug
Produktionsmatrix aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 11.03.2012
Autor: MathePower

Hallo Apfelchips,



> Gegeben ist die Inputmatrix [mm]a = \pmat{0,5 & 0,12 & 0,2\\ 0,4 & 0,5 & 0,1\\ 0 & 0,2 & 0,2}[/mm]
>  
> Durch die Einführung neuer Produktionstechniken ändern
> sich die Koeffizienten [mm]a_{12}[/mm] und [mm]a_{22}[/mm] der Inputmatrix A.
> Das Verhältnis der Produktion der Unternehmen W1, W2 und
> W3 beträgt dann [mm]x_{1} : x_{2} : x_{3}[/mm] = 5:6:2.
>  Die Nachfrage [mm]y = \pmat{75 & 70 & 20}^T[/mm] wird erwartet.
>  
> Ermitteln Sie die neue Inputmatrix und die Produktion der
> drei Unternehmen.
>  
>
>
> Ich habe die Gleichung [mm](E-A) * x = y[/mm] aufgestellt, daraus
> drei Gleichungen geformt und diese entsprechend aufgelöst.
> Leider nicht ganz erfolgreich:
>  
> [mm](E-A) * x = y[/mm] entspricht [mm]\pmat{0,5 & -a_{12} & -0,2\\ -0,4 & 1-a_{22} & -0,1\\ 0 & -0,2 & 0,8} * \vektor{5x_{1} \\ 6x_{1} \\ 2x_{1}} = \vektor{75 \\ 70 \\ 20}[/mm]
>  
> Bei (E-A) habe ich an den in der Aufgabenstellung angebenen
> stellen die Koeffizienten 0,12 und 0,5 durch Variablen
> gesetzt.
>  
> Die daraus resultierenden Gleichungen:
>  
> 1. [mm]2,5x_{1} - a_{12}(6x_{1}) - 0,4x_{1} = 75[/mm]
>  
> 2. [mm]-2x_{1} + (1 - a_{22}(6x_{1})) - 0,2x_{1} = 70[/mm]
>  


Die Gleichung muss doch so lauten:

[mm]-2x_{1} + \left(1 - a_{22}\right\blue{)}6x_{1} - 0,2x_{1} = 70[/mm]

Dann bekommst Du ein positives [mm]a_{22}[/mm].


> 3. [mm]-1,2x_{1} + 1,6x_{1} = 20[/mm]
>  
>
> Aus der 3. kann man direkt [mm]x_{1}[/mm] ermitteln: [mm]x_{1} = 50[/mm]
>  
>
> Mit diesem Wissen habe ich mich dann an die 1. Gleichung
> gewagt:
>  
> [mm]2,1*50 - 300a_{12} = 75[/mm]
>  
> [mm]- 300a_{12} = -30[/mm]
>  
> [mm]a_{12} = 0,1[/mm]
>  
>
> Und dann ging's an Gleichung Nummer 2:
>  
> [mm]-2,2*50 + (1-300a_{22}) = 70[/mm]
>  
> [mm]-110 + (1-300a_{22}) = 70[/mm]
>  
> [mm]1-300a_{22} = 180[/mm]
>  
> [mm]-300a_{22} = 179[/mm]
>  
>
> Und hier wird ziemlich offensichtlich, dass da etwas nicht
> passt: Der neue Koeffizient für [mm]a_{22}[/mm] kann nicht negativ
> sein.
>  
> Wo liegt mein Fehler? Ist evtl. schon der Ansatz falsch?

>


Der Ansatz ist richtig.


Gruss
MathePower  

Bezug
                
Bezug
Produktionsmatrix aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 So 11.03.2012
Autor: Apfelchips


Super, ich danke Dir. Ein Flüchtigkeitsfehler …

[mm]a_{22}[/mm] ist somit 0,4 und damit lautet die vollständige Lösung für die Aufgabe:

[mm]A = \pmat{0,5 & \green{0,1} & 0,2\\ 0,4 & \green{0,4} & 0,1\\ 0 & 0,2 & 0,2}[/mm]

[mm]x = \vektor{250 \\ 300 \\ 100}[/mm]

Alles richtig (oder?)

Bezug
                        
Bezug
Produktionsmatrix aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 11.03.2012
Autor: MathePower

Hallo Apfelchips,

>
> Super, ich danke Dir. Ein Flüchtigkeitsfehler …
>  
> [mm]a_{22}[/mm] ist somit 0,4 und damit lautet die vollständige
> Lösung für die Aufgabe:
>  
> [mm]A = \pmat{0,5 & \green{0,1} & 0,2\\ 0,4 & \green{0,4} & 0,1\\ 0 & 0,2 & 0,2}[/mm]
>  
> [mm]x = \vektor{250 \\ 300 \\ 100}[/mm]
>  
> Alles richtig (oder?)


Ja, alles richtig. [ok]


Gruss
MathePower

Bezug
                                
Bezug
Produktionsmatrix aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 So 11.03.2012
Autor: Apfelchips

Alles klar.
Nochmals besten Dank für Deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]