matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraProdukte zyklischer Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Produkte zyklischer Gruppen
Produkte zyklischer Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkte zyklischer Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Do 01.11.2007
Autor: Fry

Aufgabe
a)Für welche n [mm] \in \IN [/mm] sind die Gruppen Z/n²Z und Z/nZ x Z/nZ isomorph ? Beweise !
b)Bestimmen Sie (bis auf Isomorphie) alle Gruppen, die höchstens fünf Elemente haben.

Hallo alle zusammen,

mir ist klar, dass die obige Aussage nur für n=1 gilt, da ggT(1,1)=1 ist, ansonsten der ggT(n,n)=n ungleich 1 ist, aber wie beweist man das ?
Bei b) hab ich keine Ahnung, wie man das machen könnte.

Wäre für eure Hilfe sehr dankbar !
VG
Fry

        
Bezug
Produkte zyklischer Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Do 01.11.2007
Autor: andreas

hi

> a)Für welche n [mm]\in \IN[/mm] sind die Gruppen Z/n²Z und Z/nZ x
> Z/nZ isomorph ? Beweise !
>  b)Bestimmen Sie (bis auf Isomorphie) alle Gruppen, die
> höchstens fünf Elemente haben.
>  Hallo alle zusammen,
>  
> mir ist klar, dass die obige Aussage nur für n=1 gilt, da
> ggT(1,1)=1 ist, ansonsten der ggT(n,n)=n ungleich 1 ist,
> aber wie beweist man das ?

die erste gruppe ist zyklisch, die zweite für $n [mm] \not= [/mm] 1$ nicht (es gibt keine element der ordnung [mm] $n^2$, [/mm] da für jedes element $a$ gilt, dass [mm] $a^n [/mm] = 1$). probiere dir das mal klarzumachen, damit können die gruppen nicht isomorph sein.


>  Bei b) hab ich keine Ahnung, wie man das machen könnte.

ich befürchte, dass du verknüpfungstafelen aufstellen musst und dann eben anfangen auszuschliesen, welche besetzungen nicht möglich sind. man kann aber auch leicht zeigen, dass gruppen von primzahlordnung zyklisch sind, dass würde die anzahl der zu untersuchenenden gruppen ordnungen erheblich einschränken.

grüße
andreas

Bezug
                
Bezug
Produkte zyklischer Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Do 01.11.2007
Autor: c.t.

zu a): Ich überlege gerade, wie den die Elemente von Z/nZ x  Z/nZ aussehen.

Bezug
                        
Bezug
Produkte zyklischer Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Fr 02.11.2007
Autor: koepper

Guten Morgen,

> zu a): Ich überlege gerade, wie den die Elemente von Z/nZ x  Z/nZ aussehen.  

Das sind Paare, von denen jeweils eine Koordinate aus Z/nZ kommt.
Sie werden verknüpft mit der Addition modulo n, und zwar koordinatenweise.

Gruß
Will

Bezug
                
Bezug
Produkte zyklischer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 So 04.11.2007
Autor: Fry

Vielen Dank für deine Hilfe :)
LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]