matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraProdukt von Elementarmatrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Produkt von Elementarmatrizen
Produkt von Elementarmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt von Elementarmatrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:25 Fr 10.11.2006
Autor: Rektash

Aufgabe
Schreiben sie die Matrix A als Produkt von Elementarmatrizen.

Vielen Dank erstmal fürs Reinschauen.  Ich hoffe ihr könnt mit meiner Fragestellung was Anfangen, ich versuch mich so präzis wie möglich auszudrücken.

Ich habe folgende Matrix
A = [mm] \begin{Bmatrix} 2 & 5 \\ 1 & 3 \end{Bmatrix} [/mm]

und soll diese als Produkt von Elementarmatrizen darstellen. Ich habe also im folgendem die Matrix A zur Einheitsmatrix
En = [mm] \begin{Bmatrix} 1 & 0 \\ 0 & 1 \end{Bmatrix} [/mm]

umgeformt und die benötigten Umformschritte als Elementarmatrizen notiert:

E1 = [mm] \begin{Bmatrix} 1 & -2 \\ 0 & 1 \end{Bmatrix} [/mm]

E2 = [mm] \begin{Bmatrix} 1 & 0 \\ 3 & 1 \end{Bmatrix} [/mm]

E3 = [mm] \begin{Bmatrix} -1 & 0 \\ 0 & 1 \end{Bmatrix} [/mm]

E4 = [mm] \begin{Bmatrix} 0 & 1 \\ 1 & 0 \end{Bmatrix} [/mm]

Wie muss ich diese Elementarmatrizen nun miteinander multiplizieren (bitte möglichst genau) um auf das Ergebniss A Matrix zu kommen ? Ich habe auf meiner
Suche nach Antworten im Internet öfter mal etwas von "dies und jenes muss von links gerechnet werden" gehört und bin mir relativ sicher das es hierbei von Relevanz ist, denn wenn ich stumpfe von E1-E4 durchmultipliziere (E1 * E2 = X ; X * E3 = Y ; Y * E4 = nicht A)  kommt einfach nicht die A Matrix raus. Ich danke im Vorraus für alle Antworten.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


MfG Rektash

        
Bezug
Produkt von Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Sa 11.11.2006
Autor: DaMenge

Hi,

du hast leider nicht dazu geschrieben, was deine Elementarmatrizen machen sollen und wie und in welcher Reihenfolge du sie angewendet hast.

Ich gehe mal von folgender Vorgehensweise aus:
[mm] $E_4*(E_3*(E_2*(E_1*A)))=E_n$ [/mm]

dann ist natürlich : [mm] $A=(E_4*E_3*E_2*E_1)^{-1}*E_n=E_1*E_2*E_3*E_4$ [/mm]

viele Grüße
DaMenge

Bezug
                
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Sa 11.11.2006
Autor: Informacao

Hi DaMenge.

ich kann garnichts in deinem beitrag erkennen...liegt das an mir bzw. an meinem pc??

viele grüße
informacao

Bezug
                        
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Sa 11.11.2006
Autor: DaMenge

Hi,

also bei mir werden die Grafiken (, die für die Formeln erstellt wurden) korrekt angezeigt - vielleicht versuchst du einfach nochmal die Seite neuzuladen (F5) oder clickst mal direkt auf die formeln, die du nicht siehst, dann sollte ein neues Fenster/Tab aufgehen wo man die Formel sieht.

Oder siehst du auch gar keinen Text dabei?

viele Grüße
DaMenge

Bezug
                                
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Sa 11.11.2006
Autor: Informacao

hi,

das ist ganz komisch. Ich seh manche Formeln. und manche nicht, wobei ich den Text aber sehen kann.

Wenn ich die Seite neu lade, dann klappt es immer noch nicht, aber wenn ich auf die Formeln klicke, kann ich sie sehen..also ich muss dannn immer an eine "leere" Stelle im Text klicken, dann öffnen sich die Formeln in einem neuen Fenster..

sehr bizarr ;-)

Informacao

Bezug
                
Bezug
Produkt von Elementarmatrizen: E1*E2*E3*E4 = nicht A :-/
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 11.11.2006
Autor: Rektash

Danke fürs Anschauen erstmal :) .

Ja, ich bin genau so vorgegangen wie du es oben angenommen hast und die Elementarmatrizen dürften auch soweit stimmen, denn A mit ihnen durchmultipliziert ergibt  definitiv En ( hab ich ausprobiert ).

Wenn ich jetzt aber wie von dir gesagt E1*E2*E3*E4 rechne kommt einfach nicht A raus, keine Ahnung woran es liegt:

E1*E2 = [mm] \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} [/mm] * [mm] \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} -5 & -2 \\ 3 & 1 \end{pmatrix} [/mm]

Ergebniss * E3 = [mm] \begin{pmatrix} -5 & -2 \\ 3 & 1 \end{pmatrix} [/mm] *   [mm] \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} [/mm] =   [mm] \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} [/mm]

Ergebniss * E4 =     [mm] \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} [/mm] *   [mm] \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} [/mm] =   [mm] \begin{pmatrix} -2 & 5 \\ 1 & -3 \end{pmatrix} [/mm]

Egal wie blöd der Fehler auch sein mag bitte sagt mir wo er ist :) .
Danke im Vorraus für euer Mühen.

MfG Rektash

Bezug
                        
Bezug
Produkt von Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Sa 11.11.2006
Autor: DaMenge

Hi,

ohh mann - da hab ich nicht ganz aufgepasst, die richtige Formel ist natürlich:
[mm] $A=(E_4*E_3*E_2*E_1)^{-1}*E_n=E_1^{-1}*E_2^{-1}*E_3^{-1}*E_4^{-1}$ [/mm]

sorry - war mein Fehler !
viele grüße
DaMenge

Bezug
                                
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 So 12.11.2006
Autor: Rektash

Vielen dank für die Antwort erstmal.
Heißt das, dass bei [mm]E1^-1[/mm] erst die Inverse gebildet werden muss und dann am ende alle Inversen der Elementarmatrizen miteinander ( E1...->E4) multipliziert werden müssen ?.

Bezug
                                
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:01 So 12.11.2006
Autor: Rektash

Vielen dank für die Antwort erstmal.
Heißt das, dass bei [mm]E[sub]1[/sub]^{-1}[/mm] erst die Inverse von E1 gebildet werden muss und dann am ende alle Inversen der Elementarmatrizen miteinander ( von E1...->E4) multipliziert werden müssen ?. Oder lässt sich das irgendwie direkt rechnen ? Oder versteh ich einfach nur falsch was du mit [mm]E[sub]1[/sub]^{-1}[/mm] meinst ?

Bezug
                                        
Bezug
Produkt von Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:28 So 12.11.2006
Autor: DaMenge

Hi,

du hast das schon richtig verstanden, dass man die Inversen multiplizieren muss, aber die Inversen von Elementarmatrizen sind sehr leicht zu bestimmen (und vor allem selbst auch wieder Elementarmatrizen).

Wenn man z.B. zwei Zeilen vertauscht, muss sogar gar nichts rechnen, denn diese Elementarmatrix ist invers zu sich selber (zwei mal angewendet ergibt wieder den ausgangszustand)

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]