matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Produkt aus 2 Unbekannten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Produkt aus 2 Unbekannten
Produkt aus 2 Unbekannten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt aus 2 Unbekannten: Problemstellung
Status: (Frage) beantwortet Status 
Datum: 11:08 Sa 17.08.2013
Autor: amd-andy

Aufgabe
[mm] q\bruch{a^2}{2}=q\bruch{l}{2}* [/mm] ( [mm] \bruch{l}{2}-a)-q \bruch{l^2}{8} [/mm]

Hallo, wie kann ich diese Aufgabe nach 'a' auflösen. Meine Problematik besteht darin die Differenz aus [mm] (\bruch{l}{2}-a) [/mm] aus der oben genannten Aufgabe aufzulösen. Kann mir jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Produkt aus 2 Unbekannten: quadratische Gleichung
Status: (Antwort) fertig Status 
Datum: 11:22 Sa 17.08.2013
Autor: Loddar

Hallo Andy,

[willkommenmr] !!


Multipliziere die besagte Klammer zunächst aus.

Anschließend umformen in die Form:

$... [mm] *a^2 [/mm] \ + \ ...*a \ + \ ... \ = \ 0$

Dann durch den Koeffizient vor [mm] $a^2$ [/mm] teilen und Du kannst z.B. die MBp/q-Formel anwenden.


Gruß
Loddar

Bezug
                
Bezug
Produkt aus 2 Unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 17.08.2013
Autor: amd-andy

Aufgabe
[mm] -a^2-la+\bruch{1}{4}l^2 [/mm] = 0

darauf folgt (wenn ich die pq-Formel anwende):

a1/2 = [mm] -\bruch{l}{2}±\wurzel{(\bruch{l}{2})^2-\bruch{1}{4}l^2} [/mm]


Lösung ist (aber ich komm nicht drauf):

[mm] a=\bruch{1}{2}(\wurzel{2}-1)l [/mm]

Danke erstmal für die schnelle Antwort und das Willkommen im Forum: Versuch mich mal nicht auf die Knochen zu blamieren, doch mein Mathe ist nach 10 Jahren doch ein wenig eingerostet!

Wie kann ich die Differenz unter der Wurzel auflösen?
Kann ich diese Gleichung mit 2quadratischen Variablen mit der pq-Formel überhaut lösen?

Bezug
                        
Bezug
Produkt aus 2 Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Sa 17.08.2013
Autor: M.Rex

Hallo

> [mm]-a^2-la+\bruch{1}{4}l^2[/mm] = 0


Das ist ok.

>

> darauf folgt (wenn ich die pq-Formel anwende):

Das darfst du noch nicht, das - vor dem a² muss noch entfernt werden

>

> a1/2 =
> [mm]-\bruch{l}{2}±\wurzel{(\bruch{l}{2})^2-\bruch{1}{4}l^2}[/mm]

Selbst wenn du die p-q-Formel auf obige Gleichung schon anwenden hättest können, fehlt hier das [mm] \pm [/mm] vor der Wurzel, und das Vorzeichen vor den [mm] \frac{l}{2} [/mm] am Anfang würde nicht stimmen.

>
>

> Lösung ist (aber ich komm nicht drauf):

>

> [mm]a=\bruch{1}{2}(\wurzel{2}-1)l[/mm]

> Danke erstmal für die schnelle Antwort und das Willkommen
> im Forum: Versuch mich mal nicht auf die Knochen zu
> blamieren, doch mein Mathe ist nach 10 Jahren doch ein
> wenig eingerostet!

>

> Wie kann ich die Differenz unter der Wurzel auflösen?

Gar nicht.

> Kann ich diese Gleichung mit 2quadratischen Variablen mit
> der pq-Formel überhaut lösen.

Du willst doch Lösungen für a, dann sind die anderen Variablen "nur Platzhalter", ob diese quadratisch, kubisch oder wie auch immer auftauchen, ist dann irrelevant.

Marius

Bezug
                                
Bezug
Produkt aus 2 Unbekannten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Sa 17.08.2013
Autor: amd-andy

Danke für die Antwort. Ich konnte die Aufgabe mit Umformungen und der pq-Regel lösen und richtig umfomren! Das ist / war das, war mir gefehlt hat!


Super Hilfestellung und klasse Forum! Thanks!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]