matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreProblem mit einer Gleichheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Problem mit einer Gleichheit
Problem mit einer Gleichheit < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit einer Gleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Do 20.09.2012
Autor: Crashday

Hallo Leute,

ich soll zeigen, dass diese Gleichheit gilt:

[mm] (M_1 [/mm] \ [mm] M_2) \cup (M_2 [/mm] \ [mm] M_1) [/mm] = [mm] (M_1 \cup M_2) [/mm] \ [mm] (M_1 \cap M_2) [/mm]

Mit der Wahrheitstafel habe ich das ohne Probleme hinbekommen. Zur Übung wollte ich das jetzt aber mal auf den direkten Weg versuchen. Ich schreibe mal auf, bis wohin ich zurzeit gekommen bin:

{x | [mm] (x\in M_1 \wedge [/mm] x [mm] \not\in M_2) \vee [/mm] (x | x [mm] \in M_2 [/mm] ^ x [mm] \not\in M_1 [/mm] ) = (x | x [mm] \in M_1 \vee [/mm] x [mm] \in M_2) [/mm] \ (x | x [mm] \in M_1 \wedge [/mm] x [mm] \in M_2)} [/mm]

{x | [mm] (x\in M_1 \wedge [/mm] x [mm] \not\in M_2) [/mm] v (x [mm] \in M_2 [/mm] ^ x [mm] \not\in M_1 [/mm] ) = (x [mm] \in M_1 \vee [/mm] x [mm] \in M_2) \wedge [/mm] (x [mm] \not\in M_1 \vee [/mm] x [mm] \not\in M_2)} [/mm]

Hier komme ich leider nicht mehr weiter. Wäre super, wenn mir jemand helfen könnte. Ich hoffe mal, dass es bis hierhin richtig ist...

        
Bezug
Problem mit einer Gleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 20.09.2012
Autor: fred97


> Hallo Leute,
>  
> ich soll zeigen, dass diese Gleichheit gilt:
>  
> [mm](M_1[/mm] \ [mm]M_2) \cup (M_2[/mm] \ [mm]M_1)[/mm] = [mm](M_1 \cup M_2)[/mm] \ [mm](M_1 \cap M_2)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Mit der Wahrheitstafel habe ich das ohne Probleme
> hinbekommen. Zur Übung wollte ich das jetzt aber mal auf
> den direkten Weg versuchen. Ich schreibe mal auf, bis wohin
> ich zurzeit gekommen bin:
>  
> {x | [mm](x\in M_1 \wedge[/mm] x [mm]\not\in M_2) \vee[/mm] (x | x [mm]\in M_2[/mm] ^
> x [mm]\not\in M_1[/mm] ) = (x | x [mm]\in M_1 \vee[/mm] x [mm]\in M_2)[/mm] \ (x | x
> [mm]\in M_1 \wedge[/mm] x [mm]\in M_2)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> {x | [mm](x\in M_1 \wedge[/mm] x [mm]\not\in M_2)[/mm] v (x [mm]\in M_2[/mm] ^ x
> [mm]\not\in M_1[/mm] ) = (x [mm]\in M_1 \vee[/mm] x [mm]\in M_2) \wedge[/mm] (x
> [mm]\not\in M_1 \vee[/mm] x [mm]\not\in M_2)}[/mm]



Deine Schreibweise ist sehr ungewöhnlich und falsch !

Zeigen mußt Du:



1. $ [mm] (M_1 [/mm] $ \ $ [mm] M_2) \cup (M_2 [/mm] $ \ $ [mm] M_1) [/mm] $  [mm] \subseteq [/mm] $ [mm] (M_1 \cup M_2) [/mm] $ \ $ [mm] (M_1 \cap M_2) [/mm] $

und

2. $ [mm] (M_1 [/mm] $ \ $ [mm] M_2) \cup (M_2 [/mm] $ \ $ [mm] M_1) [/mm] $ [mm] \supseteq [/mm] $ [mm] (M_1 \cup M_2) [/mm] $ \ $ [mm] (M_1 \cap M_2) [/mm] $

Ich zeig Dir, wie 1. geht. 2. machst Du dann.

Sei x [mm] \in [/mm]  $ [mm] (M_1 [/mm] $ \ $ [mm] M_2) \cup (M_2 [/mm] $ \ $ [mm] M_1) [/mm] $

Fall 1:  x [mm] \in [/mm]  $ [mm] (M_1 [/mm] $ \ $ [mm] M_2)$. [/mm] Dann ist x [mm] \in M_1 [/mm] , x [mm] \notin M_2. [/mm] Folglich haben wir

        x [mm] \in M_1 \cup M_2 [/mm] , x [mm] \notin M_1 \cap M_2. [/mm]

Fazit: x [mm] \in [/mm] $ [mm] (M_1 \cup M_2) [/mm] $ \ $ [mm] (M_1 \cap M_2) [/mm] $

Fall 2:  x [mm] \in [/mm]  $ [mm] (M_2 [/mm] $ \ $ [mm] M_1)$. [/mm] Geht wie Fall 1 (vertausche die Rollen von [mm] M_1 [/mm] und [mm] M_2) [/mm]

FRED

>  
> Hier komme ich leider nicht mehr weiter. Wäre super, wenn
> mir jemand helfen könnte. Ich hoffe mal, dass es bis
> hierhin richtig ist...


Bezug
                
Bezug
Problem mit einer Gleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Do 20.09.2012
Autor: Crashday

Irgendwie bin ich ein wenig verwirrt. Kümmern wir uns jetzt erst um den linken Teil? Und Fall 2 wär doch genauso wie Fall 1, nur dass [mm] M_1 [/mm] und [mm] M_2 [/mm] vertauscht sind oder?

Fall 2: x [mm] \in (M_2 [/mm] / [mm] M_1) [/mm] Dann ist x [mm] \in M_2 [/mm] , x [mm] \not\in M_1 [/mm] . Folglich haben wir x [mm] \in M_2 \cup M_1 [/mm] , x [mm] \not\in M_2 \cap M_1 [/mm] . Somit ist das genau dasselbe wie in Fall 1.

Ich habe das als ersten so aufgeschrieben, da wir ein Beispiel genauso gemacht haben. Hier z. B. haben wir das so gemacht:

[mm] M_1 \cap (M_1 \cup M_2) [/mm] = [mm] M_1 [/mm]

[mm] M_1 \cap [/mm] {x | x [mm] \in M_1 \vee [/mm] x [mm] \in M_2} [/mm]

= {x | x [mm] \in M_1 \wedge [/mm] (x [mm] \in M_1 \vee [/mm] x [mm] \in M_2)} [/mm]

Hier wurde dann das Distributivgesetz angewendet:

= {x | x [mm] \in M_1 \wedge [/mm] x [mm] \in M_1) \vee [/mm] (x [mm] \in M_1 \wedge [/mm] x [mm] \in M_2)} [/mm]

= {x | x [mm] \in M_1 \vee [/mm] (x [mm] \in M_1 \wedge [/mm] x [mm] \in M_2)} [/mm]

Adjunktion:

= [mm] M_1 [/mm] = [mm] M_1 [/mm]

Darum habe ich das auch so an dem anderen Beispiel probiert, aber irgendwie klappt das nicht...

Bezug
                        
Bezug
Problem mit einer Gleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Fr 21.09.2012
Autor: schachuzipus

Hallo Crashday,


> Irgendwie bin ich ein wenig verwirrt. Kümmern wir uns
> jetzt erst um den linken Teil?

Ja, wir sind dabei, die Richtung [mm](M_1\setminus M_2)\cup(M_2\setminus M_1) \ \subseteq \ (M_1\cup M_2)\setminus(M_1\cap M_2)[/mm] zu zeigen, haben also als Voraussetzung:

[mm]x\in (M_1\setminus M_2)\cup(M_2\setminus M_1)[/mm] und müssen zeigen, dass [mm]x[/mm] dann auch [mm]\in (M_1\cup M_2)\setminus(M_1\cap M_2)[/mm] ist.

Und die Voraussetzung wird in 2 Fälle unterteilt:

1.1: [mm]x[/mm] aus der ersten Menge, also [mm]x\in (M_1\setminus M_2)[/mm]

1.2: [mm]x[/mm] aus der zweiten Menge, also [mm]x\in (M_2\setminus M_1)[/mm]

Das sind ja (neben [mm]x\in [/mm] beiden Mengen, was aber durch 1.1 und 1.2 abgedeckt ist) genau die Fälle, die linkerhand auftreten können, [mm]x\in A\cup B[/mm] heißt ja: [mm]x\in A \ \text{oder} \ x\in B[/mm]

> Und Fall 2 wär doch genauso
> wie Fall 1, nur dass [mm]M_1[/mm] und [mm]M_2[/mm] vertauscht sind oder?

Jo!

>  
> Fall 2: x [mm]\in (M_2[/mm] / [mm]M_1)[/mm]

Genau!

> Dann ist x [mm]\in M_2[/mm] , x [mm]\not\in M_1[/mm]  [ok]
> . Folglich haben wir x [mm]\in M_2 \cup M_1[/mm] , x [mm]\not\in M_2 \cap M_1[/mm]
> . Somit ist das genau dasselbe wie in Fall 1.

Ganz genauso ist es!

>
> Ich habe das als ersten so aufgeschrieben, da wir ein
> Beispiel genauso gemacht haben. Hier z. B. haben wir das so
> gemacht:
>
> [mm]M_1 \cap (M_1 \cup M_2)[/mm] = [mm]M_1[/mm]

Du musst vor die Mengenklammern einen Backslash machen, sonst wird das falsch übersetzt, also \{ bzw. \} für [mm] $\{$ bzw. $\}$ [/mm]

Ich habe das hier mal ausgebessert.

>  
> [mm] $M_1 \cap \{x | x \in M_1 \vee x \in M_2\}$ [/mm]
>  
> $= [mm] \{x | x \in M_1 \wedge (x \in M_1 \vee x \in M_2)\}$ [/mm]
>  
> Hier wurde dann das Distributivgesetz angewendet:
>  
> $= [mm] \{x | x \in M_1 \wedge x \in M_1) \vee (x \in M_1 \wedge x \in M_2)\}$ [/mm]
>  
> $= [mm] \{x | x \in M_1 \vee (x \in M_1 \wedge x \in M_2)\}$ [/mm]
>  
> Adjunktion:
>
> $= [mm] M_1 [/mm] = [mm] M_1$ [/mm]

Jo

>  
> Darum habe ich das auch so an dem anderen Beispiel
> probiert, aber irgendwie klappt das nicht...

Naja, was sollen wir dazu denn sagen? Wir kennen doch dein Bsp. nicht ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]