matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionProblem bei Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Problem bei Induktion
Problem bei Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mo 14.01.2008
Autor: philipp-100

Hallo,
ich habe schon alles probiert, weiss aber nicht mehr weiter.
und zwar geht es hierum

[mm] \sum_{k=0}^{n} 2^k*\vektor{n \\ k}=3^n [/mm]

IA klappt mit n=0

wenn ich n durch n+1 ersetzt habe, komme ich bei der linken Gleichung nicht weiter als:

[mm] \sum_{k=0}^{n} 2^k*\vektor{n+1 \\ k}+2^{n+1} [/mm]

mein Problem ist einfach das n+1 im binomialkoeffizienten.
Es darf nur n da stehen.
Summenindexverschiebung bringt ja hier auch nichts, weil die das n im Term nicht berührt.
Schonmal danke im vorraus
Philipp



        
Bezug
Problem bei Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 14.01.2008
Autor: Marcel

Hallo Philipp,

wenn Du die allgemeine binomische Formel
[mm] $(a+b)^n=\sum_{k=0}^n [/mm] {n [mm] \choose [/mm] k} [mm] a^k b^{n-k}$ [/mm]
zur Hand hast, so folgt Deine Formel sofort für $a=2$ und $b=1$.

Wenn Du diese noch nicht zur Hand hast, so wirst Du hier quasi für eben diese speziellen $a$ und $b$ das ganze induktiv beweisen.

Dabei hast Du in der Tat das von Dir angesprochene Problem. Du kannst aber ausnutzen, dass folgende Gleichheit gilt:
[mm] $(\*)$ [/mm] ${n+1 [mm] \choose [/mm] k}={n [mm] \choose [/mm] k}+{n [mm] \choose [/mm] k-1}$

Das sollte Dir helfen (danach musst Du halt die Summe in 2 Summen aufspalten, Indexshift, Induktionsvoraussetzung usw.)

Wenn Du irgenwo nicht weiterkommst, so kannst Du Dich ein wenig an folgendem orientieren:
Der Beweis zur allgemeinen bin. Formel steht z.B. hier:
[]http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf
Satz 2.12
[mm] ($(\*)$ [/mm] ist dort Satz 2.11)

(Anmerkung zum Beweis zu Satz 2.12:
Diesen Beweis kann man auch "direkter" führen, also ohne zunächst den Beweis für den Spezialfall $y=1$ zu machen. Das hat aber für Dich momentan nur einen ästhetischen Wert, später wird Dir das beim Begriff der Binomialreihe
[]http://de.wikipedia.org/wiki/Binomische_Reihe
vll. mal klarer werden, warum das dort so gemacht wurde. Es hängt einfach mit einer Verallgemeinerung zusammen.)

Gruß,
Marcel

Bezug
                
Bezug
Problem bei Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mo 14.01.2008
Autor: philipp-100

Danke Marcel,
mit der Formel gehts ja super gut.:-)
Das heisst doch ich habe 3 Möglichkeiten:

1)ohne Induktion
2)mit Induktion, wenn ich vor dem IS schon die Äquvivalenzumformung mache
3)Eine für mich zu komplizierte.
Viele Grüße
Philipp

Bezug
                        
Bezug
Problem bei Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 14.01.2008
Autor: Marcel

Hallo Philipp,

> Danke Marcel,
>  mit der Formel gehts ja super gut.:-)
>  Das heisst doch ich habe 3 Möglichkeiten:
>  
> 1)ohne Induktion

das kann man so nicht sagen, es sei denn, Du kennst auch einen Beweis für die allgemeine binomische Formel ohne Induktion (so einen gibt es auch, dazu bemüht man dann die Kombinatorik). Denn andernfalls ist der Beweis für die allgemeine binomische Formel vollkommen analog zu dem Induktionsbeweis für die binomische Formel mit diesen speziellen Werten hier, das heißt, die Beweisschritte sind im Wesentlichen die gleichen. Du kannst Dir das ja mal angucken, indem Du Dir anguckst, wie der Beweis zu Satz 2.12 aussieht und ihn mit Deinem für das spezielle $a=2$ und $b=1$ vergleichst.

>  2)mit Induktion, wenn ich vor dem IS schon die
> Äquvivalenzumformung mache

Also analog zum Beweis zur allg. bin. Formel im Skript meinst Du hier wohl?!

>  3)Eine für mich zu komplizierte.

Inwiefern? Meinst Du wegen der Binomialreihe?
Mit der Binomialreihe wollte ich nur andeuten, dass man die binomische Formel in einer allgemeineren Version beweisen kann. Diese beinhaltet dann natürlich die verallgemeinerte binomische Formel als Spezialfall (siehe auch Wiki), welche wiederum Deine Formel als Spezialfall enthält. So gesehen hast Du Recht, aber es genügt eigentlich, wenn Du Dir mal den Induktionsbeweis für die allgemeine binomische Formel anguckst und versuchst, diesen nachzuvollziehen. Danach setzt Du einfach die speziellen Werte ein und erhälst Deine Formel.
Ich meine, wenn Du Deine Formel für speziell $a=2$ und $b=1$ induktiv beweist und vergleichst, was Du dort für Zwischenschritte machst und diese dann mit denen beim Beweis zur verallgemeinerten bin. Formel vergleichst, so siehst Du, dass die Beweise im Wesentlichen vollkommen gleich sind, d.h. in dem einen Beweis läuft eigentlich alles genauso wie in dem anderen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]