matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenProblem bei DGL 1. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Problem bei DGL 1. Ordnung
Problem bei DGL 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 26.10.2010
Autor: mero

Aufgabe
[mm] x^2y'=\bruch{1}{4}x^2+y^2 [/mm]  

[mm] y'=\bruch{1}{4}+(\bruch{y}{x})^2 [/mm]

[mm] u=\bruch{y}{x} [/mm]
y=u*x
y'=u'*x+u

einsetzten

[mm] u'*x+u=\bruch{1}{4}+u^2 [/mm]

Trennung der Variablen:

[mm] \bruch{du}{dx}x=\bruch{1}{4}+u^2-u [/mm]

[mm] 4du=(u^2-u)\bruch{dx}{x} [/mm]

[mm] 4\bruch{du}{u^2-u}=\bruch{dx}{x} [/mm]

Integral:

4*LN(u-1)-LN(u)=LN(x)+LN(C)

[mm] 4*LN(\bruch{u-1}{u})=LN(x+C) [/mm]
Ln auflösen

[mm] 4*\bruch{u-1}{u}=x+C [/mm]

Hallo,

irgendwie ist es zeit für mich heute beim lernen aufzuhören. ich steh auf dem schlauch.

ich komme nun irgendwie mit dem auflösen nicht weiter, ist das so richtig, oder habe ich zwischendurch einen fehler gemacht?

        
Bezug
Problem bei DGL 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 26.10.2010
Autor: Herby

Hi,

> [mm]x^2y'=\bruch{1}{4}x^2+y^2[/mm]
>
> [mm]y'=\bruch{1}{4}+(\bruch{y}{x})^2[/mm]
>
> [mm]u=\bruch{y}{x}[/mm]
> y=u*x
> y'=u'*x+u
>
> einsetzten
>
> [mm]u'*x+u=\bruch{1}{4}+u^2[/mm]
>
> Trennung der Variablen:
>
> [mm]\bruch{du}{dx}x=\bruch{1}{4}+u^2-u[/mm]
>
> [mm]4du=(u^2-u)\bruch{dx}{x}[/mm]

so geht das aber nicht mit dem [mm] \frac14 [/mm] ;-)


LG
Herby

Bezug
                
Bezug
Problem bei DGL 1. Ordnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:27 Di 26.10.2010
Autor: mero

oh gott!
naütrlich

[mm] 4du=4(u^2-u)*\bruch{dx}{x} [/mm]

=>

[mm] \bruch{du}{u^2-u}=\bruch{dx}{x} [/mm]


das sieht so besser aus, oder?
(definitiv die letzte aufgabe für heute =))

Danke!

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Di 26.10.2010
Autor: Herby



   [haee]

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Di 26.10.2010
Autor: fred97


> oh gott!
>  naütrlich
>  
> [mm]4du=4(u^2-u)*\bruch{dx}{x}[/mm]
>  
> =>
>  
> [mm]\bruch{du}{u^2-u}=\bruch{dx}{x}[/mm]
>  
>
> das sieht so besser aus, oder?

Ja und jetzt integrieren

Ich nehme alles zurück !

FRED


>  (definitiv die letzte aufgabe für heute =))
>  
> Danke!


Bezug
                                
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Di 26.10.2010
Autor: Herby

Hallo,

ich will euch ja nicht ärgern, aber müsste es nicht eigentlich:

[mm] 4u'x=\red{1}+4(u^2-u) [/mm] heißen?


LG
Herby

Bezug
                        
Bezug
Problem bei DGL 1. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Di 26.10.2010
Autor: mero

(:

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]