matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimzahltest (Lucas-Folgen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Primzahltest (Lucas-Folgen)
Primzahltest (Lucas-Folgen) < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahltest (Lucas-Folgen): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:38 Sa 28.05.2011
Autor: booobik

Aufgabe
Test: Es sei  N>1 ungerade und [mm] N+1=\produkt_{i=1}^{s}q_i^{f_i } [/mm] . Angenommen, es existiert eine Zahl D mit  (D|N)=-1 derart, dass es für jeden Primfaktor  [mm] [i]q_i [/mm] [/i]  von  N+1 eine Lucas-Folge [mm] (U_n^{(i)})_{n\ge0} [/mm]   mit Diskriminante [mm] D=P_i^2-4Q_i [/mm]  und [mm] ggT(P_i,Q_i)=1 [/mm] oder  [mm] ggT(N,Q_i)=1 [/mm]  gibt, wobei ferner [mm] N|U_{N+1}^{(i) } [/mm] und [mm] N$\hspace{-0.4em}\not\hspace{0.025em}|\$U_{(N+1)/q_i}^{(i)} [/mm] gilt. Dann ist  N eine Primzahl.

Beweis: Nach (V.3) und (V.4),  [mm] N|U_{\Phi_D (N)}^{(i)} [/mm] für jedes i=1,…,s. Es sei [mm] \rho^{(i)} [/mm] (N) die kleinste Zahl r mit [mm] N|U_{r}^{(i)}. [/mm] Nach (IV.29) oder (IV.22) und der Annahme folgt [mm] \rho^{(i)}(N)|(N+1), \rho^{(i)}(N)$\hspace{-0.4em}\not\hspace{0.025em}|\$(N+1)/q_i [/mm]  und [mm] \rho^{(i)} (N)|\Phi_D(N). [/mm] Daher [mm] q_i^{f_i}|\rho^{(i)}(N) [/mm] für jedes i = 1,...,s. Somit [mm] (N+1)|\Phi_D(N) [/mm] und nach (V.2) ist N prim.
wobei
[mm] N=\produkt_{i=1}^{s}p_i^e_i [/mm]
[mm] \Phi_D(N)=1/{2^{s-1}}\produkt_{i=1}^{s}p_i^{e_i-1}(p_i-(\bruch{D}{p_i})) [/mm]
[mm] (\bruch{D}{p_i}) [/mm] ist Jacobi-Symbol
[mm] U_r^{(i)} [/mm] ist die Lucas-Folge mit [mm] U_r^{(i)}=\bruch{x_1^{r^{(i)}}-x_2^{r^{(i)}}}{x_1-x_2} [/mm]
D ist die Diskriminante = [mm] (x_1-x_2)^2 [/mm]
[mm] x_1,x_2 [/mm] sind wurzel von [mm] x^2-Px+Q=0 [/mm]

Hallo erst mal an alle!

Der Test und Beweis sind aus dem Buch "Die Welt der Primzahlen" von Ribenboim, Seite 66

Ich verstehe den Beweis nicht ganz.
Warum [mm] \rho^{(i)}(N)|(N+1), \rho^{(i)}(N)$\hspace{-0.4em}\not\hspace{0.025em}|\$(N+1)/q_i [/mm]  und [mm] \rho^{(i)} (N)|\Phi_D(N) [/mm] gilt, ist mir klar, deswegen sind Formeln, die ich hier nicht geschrieben habe, (V.3,V.4,IV.29...) nicht relevant. Beweise von diesen Formeln sind mir auch klar.

Ich gleube, dass [mm] \rho^{(i)}(N)|(N+1) [/mm] und [mm] \rho^{(i)}(N)$\hspace{-0.4em}\not\hspace{0.025em}|\$(N+1)/q_i [/mm] für den Beweis genügt, dass [mm] q_i^{f_i}|\rho^{(i)}(N) [/mm] gilt.
Vereinfacht a|b*c, a$ [mm] \hspace{-0.4em}\not\hspace{0.025em}|\ [/mm] $b, wobei c-prim [mm] \Rightarrow [/mm] c|a, klingt logisch, ich kanns aber nicht beweisen. Oder liege ich da falsch?

Warum [mm] (N+1)|\Phi_D(N) [/mm] gilt, verstehe ich auch nicht.  (wenn N-prim, dann sind die beiden Seiten gleich, wir wollen aber erst beweisen, dass N prim ist...)

Der letzte Schritt (mit V.2) ist dann wieder verständlich.

Bitte um Tipps zum Beweis

Beste Grüße
P.S: ich hoffe ich habe gegen keine Regel verstoßen, schreibe zum ersten mal im Forum:)

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Primzahltest (Lucas-Folgen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Do 02.06.2011
Autor: booobik

Guten Tag!
ich verstehe dass der ganze Satz mit Beweis etwas "zu lang" ist, vielleicht kann mir jemand eine kurze Frage zum Beweis beantworten oder einen Tip geben

$ [mm] N=\produkt_{i=1}^{s}q_i^{f_i } [/mm] $ - Primfaktorzerlegung, [mm] q_i [/mm] - prim
a|N und [mm] a$\hspace{-0.4em}\not\hspace{0.025em}|\$\bruch{N}{q_i} \Rightarrow [/mm] $ [mm] q_i^{f_i}|a [/mm] $

Stimmt diese Aussage? wenn ja, wie kann ich siebeweisen

Bezug
                
Bezug
Primzahltest (Lucas-Folgen): Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Do 02.06.2011
Autor: Lippel

Hallo,

>  ich verstehe dass der ganze Satz mit Beweis etwas "zu
> lang" ist, vielleicht kann mir jemand eine kurze Frage zum
> Beweis beantworten oder einen Tip geben
>  
> [mm]N=\produkt_{i=1}^{s}q_i^{f_i }[/mm] - Primfaktorzerlegung, [mm]q_i[/mm] -
> prim
>  a|N und a[mm]\hspace{-0.4em}\not\hspace{0.025em}|\[/mm][mm] \bruch{N}{q_i} \Rightarrow[/mm]
>  [mm]q_i^{f_i}|a[/mm]
>  
> Stimmt diese Aussage? wenn ja, wie kann ich siebeweisen

Sie stimmt:
Aus [mm] $a\;|\; [/mm] N$ folgt [mm] $a=N=\produkt_{i=1}^{s}q_i^{g_i }$ [/mm] mit [mm] $g_i \leq f_i \;\;\forall [/mm] i$
Angenommen [mm] $q_i^{f_i} \not|\; [/mm] a [mm] \Rightarrow g_i [/mm] < [mm] f_i$ [/mm] (beachte, dass hier nun echt kleiner steht) [mm] $\Rightarrow [/mm] a [mm] \;|\; \frac{N}{q_i}$, [/mm] denn [mm] $q_i$ [/mm] kommt in a in einer echt kleineren Potenz vor als in N. Dies ist ein Widerspruch zur Voraussetzung, also muss [mm] $q_i^{f_i} \;|\; [/mm] a$ gelten.

LG Lippel


Bezug
        
Bezug
Primzahltest (Lucas-Folgen): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Sa 04.06.2011
Autor: booobik

Vielen DANK!

ich habe jetzt den ganzen Beweis gecheckt:)

Grüße!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]