matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimzahlen, primitivwurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Primzahlen, primitivwurzel
Primzahlen, primitivwurzel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlen, primitivwurzel: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:30 So 17.12.2006
Autor: Mikke

Hallo habe eine Frage zu folgender Aufgabe:

Wie kann ich mit Hilfe der Existenz einer Primitivwurzel und der Formel für eine geometrische Summe zeigen, dass gilt:

p Primzahl, k aus [mm] \IN; [/mm]
[mm] 1^{k}+2^{k}+...+(p-1)^{k} [/mm]
[mm] \equiv [/mm]  -1 mod p,falls p-1 teilt k
[mm] \equiv [/mm] 0 mod p, sonst.
hier in diesem fall ist also eine Primitivwurzel g, eine zahl g, so dass die reste der Zahlen 0,g, [mm] g^{2},...,g^{p-2} [/mm] gleich 1,2,...,p-1 sind (reihenfolge beliebig).
man muss also nur noch beweisen dass [mm] \summe_{j=0}^{p-2} g^{jk}\equiv [/mm] -1, falls p-1 teilt k, oder [mm] \equiv [/mm] 0 sonst (mod p).
aber wie mache ich das hier, könnte zuerst auf beiden seiten mit [mm] g^k [/mm] -1 multiplizieren und dann feststellen dass diese zahl genau dann durch p teilbar ist, wenn k durch p-1 teilbar ist. aber wie zeige ich das?ist das soweit richtig?
danke schoin mal
MfG mikke


Danke schon mal.
MfG Mikke



        
Bezug
Primzahlen, primitivwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Mo 18.12.2006
Autor: zahlenspieler

Hallo Mikke,
> Hallo habe eine Frage zu folgender Aufgabe:
>
> Wie kann ich mit Hilfe der Existenz einer Primitivwurzel
> und der Formel für eine geometrische Summe zeigen, dass
> gilt:
>
> p Primzahl, k aus [mm]\IN;[/mm]
>  [mm]1^{k}+2^{k}+...+(p-1)^{k}[/mm]
>  [mm]\equiv[/mm]  -1 mod p,falls p-1 teilt k
> [mm]\equiv[/mm] 0 mod p, sonst.
>  hier in diesem fall ist also eine Primitivwurzel g, eine
> zahl g, so dass die reste der Zahlen 0,g, [mm]g^{2},...,g^{p-2}[/mm]
> gleich 1,2,...,p-1 sind (reihenfolge beliebig).

Nicht ganz: Ist $g$ Primitivwurzel, dann sind alle Reste [mm] $1,\ldots, [/mm] p-1$ Potenzen von $g$ (modulo p), wobei $g$ Ordnung $p-1$ hat.
Deine Summe wird also quasi "umgeordnet".
Das mit der "geometrischen Summe" geht aber nur, wenn $p-1$ $k$ nicht teilt.
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]