matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPrimzahl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Primzahl
Primzahl < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahl: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:19 Mi 27.11.2013
Autor: ElizabethBalotelli

Aufgabe
Es gibt für jedes n [mm] \in \IN [/mm] ein k  [mm] \in \IN [/mm] so, dass  [mm] \left\{ k,.....,k+n \right\} [/mm] keine Primzahl enthält

Ich schaue mir hier doch sozusagen die Primzahllücken an. Die kleinste ist 1. Kann es sein, dass n nicht so groß sein darf wie k? Wegen folgendem Wikipedia Eintrag:

Joseph Bertrand zeigte folgende natürliche Begrenzung einer Primzahllücke: Für jedes n > 1 gilt: zwischen n und 2n liegt wenigstens eine Primzahl. Daraus folgt, dass eine Primzahllücke, begonnen bei n , nicht größer sein kann als n selbst.

aber dort steht auch, dass es scheinbar ausser der abc-Vermutung noch keine Formel dafür gibt, dass es für ein n  [mm] \in \IN [/mm] eine Lücke der Länge n gibt. Was mache ich nun?? Vorschläge?


        
Bezug
Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mi 27.11.2013
Autor: leduart

Hallo
kann es sein, dass da steht (k,k+2,k+3,....k+n) dann versuchs mit  k=n!
sonst mit k=n!+2
Gruss leduart

Bezug
                
Bezug
Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Do 28.11.2013
Autor: ElizabethBalotelli


> Hallo
>  kann es sein, dass da steht (k,k+2,k+3,....k+n)

wie kommst du auf (k,k+2, k+3...), wieso fehlt k+1?
Nee in der Aufgabenstellung steht wirklich nur  [mm] \left\{ k,...,k+n \right\} [/mm]

> versuchs mit  k=n!

Das würde ja heissen, das ich z.B. für n=2 n!=2 hätte und somit auch k=2
dann würde ja  [mm] \left\{2,3,4 \right\} [/mm] die Primzahlen 2 und 3 enthalten nach deiner Methode!

>  sonst mit k=n!+2

Dann müsste ja für n=1 k=3 sein, und  [mm] \left\{ 3,4 \right\} [/mm] enthält auch eine Primzahl.

>  Gruss leduart  


Bezug
                        
Bezug
Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Do 28.11.2013
Autor: leduart

Hallo
ich hatte gesagt, k=n!+2
n! ist durch alle Zahlen bis n teilbar, deshalb auch n!+2, n!+3 n!+n
siehe https://matheraum.de/forum/Beliebig_grosse_Primzahlluecken/t721283
ich seh wohl du mußt  wphl (n+1)!+2 w#hlen
siehe auch http://de.wikipedia.org/wiki/Primzahllücke
Gruss leduart


Bezug
                                
Bezug
Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 Sa 30.11.2013
Autor: ElizabethBalotelli


> Hallo
>  ich hatte gesagt, k=n!+2
>  n! ist durch alle Zahlen bis n teilbar, deshalb auch n!+2,
> n!+3 n!+n
>  siehe
> https://matheraum.de/forum/Beliebig_grosse_Primzahlluecken/t721283
>  ich seh wohl du mußt  wphl (n+1)!+2 w#hlen
>  siehe auch http://de.wikipedia.org/wiki/Primzahllücke
>  Gruss leduart
>  

Es tut mir leid, aber das musst du noch mal genauer erklären, so verstehe ich es nicht. Die Behauptung ist ja, dass es für jedes n [mm] \in \IN [/mm] ein k [mm] \in \IN [/mm] gibt, so das  [mm] \left\{ k,...k+n \right\} [/mm] keine Primzahl erhält. WEnn ich aber jetzt deine Formel nehme für n=1 erhalte ich für k=3 bzw für (n+1)!+2 ist k=4, also  [mm] \left\{ 3,4 \right\} [/mm] bzw  [mm] \left\{ 4,5 \right\} [/mm] erhalten aber beide Primzahlen!

Bezug
                                        
Bezug
Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Sa 30.11.2013
Autor: reverend

Hallo ElizabethBalotelli,

das Prinzip sollte doch klar sein. Selbst denken macht schlau...

Gehen wir es mal umgekehrt an.
Von den Zahlen [mm] $m!+2,\;m!+3,\;\cdots,\;m!+m-1,\;m!+m$ [/mm] kann keine prim sein.
Das sind $m-1$ aufeinanderfolgende Zahlen.
Mach Dir erstmal klar, warum das für jedes natürliche $m$ mit [mm] m\ge{2} [/mm] so ist.

Nun sollst Du zu einem gegebenen $n$ ein $k$ finden, so dass ab $k$ (und $k$ inklusive) bis $k+n$ keine Primzahl existiert. Das sind also $n+1$ aufeinanderfolgende Zahlen.

Mit diesen Informationen kannst Du die nötige Berechnung von $k$ doch leicht selbst erstellen, statt hier nur Formeln zu prüfen, die eben vielleicht noch einen kleinen Fehler enthalten - oder die Du falsch anwendest, weil Du das Prinzip nicht verstanden hast.

Viel Erfolg dabei!
reverend

Bezug
                                                
Bezug
Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 30.11.2013
Autor: ElizabethBalotelli

Ah vielen Dank für die Erklärung!!

Lieg ich dann mit: Wähle k=(n+1)!+2 richtig? Beim Ausprobieren klappts, aber so 100 prozentig sicher, wie man drauf kommt, bin ich mir nicht. Wie du schon geschrieben hast, aber wir für den ersten Fall, den du nennst (m-1) Elemente die keine Primzahl sind, wir wollen aber (n+1) Elemente zum Schluss haben. Das ist eine Differenz von 2 Elementen! Gleichen wir die mit Hilfe der Gleichung  k=(n+1)!+2 aus? SCheinbar ja, aber wie geht das?

Danke schonmal im Voraus

Bezug
                                                        
Bezug
Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Sa 30.11.2013
Autor: reverend

Hallo nochmal,

> Ah vielen Dank für die Erklärung!!
>  
> Lieg ich dann mit: Wähle k=(n+1)!+2 richtig?

Ja, das ist vollkommen korrekt.

> Beim
> Ausprobieren klappts, aber so 100 prozentig sicher, wie man
> drauf kommt, bin ich mir nicht. Wie du schon geschrieben
> hast, aber wir für den ersten Fall, den du nennst (m-1)
> Elemente die keine Primzahl sind, wir wollen aber (n+1)
> Elemente zum Schluss haben. Das ist eine Differenz von 2
> Elementen! Gleichen wir die mit Hilfe der Gleichung  
> k=(n+1)!+2 aus?

Na, das ist doch die Erklärung. Man muss sich halt nur überlegen, dass $(n+1)!+a$ durch $a$ teilbar (und somit nicht prim) ist, wenn [mm] 2\le a\le{n+1} [/mm] ist.

> SCheinbar ja, aber wie geht das?

Genauso, wie Dus oben gemacht hast.

> Danke schonmal im Voraus

lg
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]