matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimteiler und Elementarteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Primteiler und Elementarteiler
Primteiler und Elementarteiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primteiler und Elementarteiler: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:07 Mo 25.05.2015
Autor: preissg6

Aufgabe
Betrachte eine Gruppe G mit der Repräsentationsmatrix
[mm] R=\pmat{ 3 & 4 & 6 & 8 & 10 & 12 \\ 2 & 7 & 6 & 8 & 10 & 12 \\ 4 & 8 & 16 & 16 & 20 & 24 \\ 6 & 12 & 18 & 30 & 30 & 36 \\ 8 & 16 & 24 & 32 & 49 & 48 \\ 10 & 20 & 30 & 40 & 50 & 70 } [/mm]

Stelle G als Produkt zyklischer Gruppen dar. Wie sehen die Primteiler- und die Elementarteiler- Normalform aus? Ist G zyklisch?

(i) Stelle G als Produkt zyklischer Gruppen dar:

Nach Zeilen- und Spaltenumformungen habe ich folgenden Diagonalmatrix herausbekommen:

R= [mm] \pmat{ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 10 } [/mm]

Ich würde jetzt sagen, dass die Darstellung als Produkt zyklischer Gruppen folgendermaßen aussieht:

[mm] G\cong \IZ/2\IZ [/mm] x [mm] \IZ/3\IZ [/mm] x [mm] \IZ/4\IZ [/mm] x [mm] \IZ/6\IZ [/mm] x [mm] \IZ/9\IZ [/mm] x [mm] \IZ/10\IZ [/mm]

(ii) Wie sehen Primteiler und Elementarteiler Normalform aus?

An dieser Stelle habe ich ziemliche Probleme. Ich habe die Gruppenelemente aus dem ersten Ausgabenteil versucht in ihre Primfaktoren zu zerlegen und hätte dann folgendes raus für die Primteilernormalform:

[mm] (\IZ/2\IZ)^5 [/mm] x [mm] (\IZ/3\IZ)^4 [/mm] x [mm] (\IZ/5\IZ) [/mm]

Stimmt das so?

Wie bestimme ich denn den Elementarteiler?

Vielen Dank für eure Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Primteiler und Elementarteiler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 28.05.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Primteiler und Elementarteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Sa 30.05.2015
Autor: Rocky14

Primteilernormalform stimmt.
Nun gilt ja
2 = 2
3 = 3
4 = 2*2
6 = 3*2
9 = 3*3
10 = 2*5

Jetzt nimmst du dir immer eine von den Primzahlen, bis alle aufgebraucht sind. D.h.
5 * 3 * 2 = 30
3 * 2 = 6
3 * 2 = 6
2 = 2
2 = 2

=> [mm] \IZ/30\IZ [/mm] x [mm] \IZ/6\IZ [/mm] x [mm] \IZ/6\IZ [/mm] x [mm] \IZ/2\IZ [/mm] x [mm] \IZ/2\IZ [/mm]
Das ist deine Elementarteiler-Normalenform

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]