matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimitivwurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Primitivwurzeln
Primitivwurzeln < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitivwurzeln: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:34 So 29.06.2008
Autor: grenife

Aufgabe
Prüfen Sie, ob zu folgenden Zahlen Primitivwurzeln existieren, und berechnen Sie ggf. eine Primitivwurzel:
61; 1001; 1331; 2662

Hallo zusammen,

weiß bei dieser Aufgabe leider nicht, wie man sie angehen soll. Die Existenz kann ich zumindest für die erste Zahl zeigen, da 61 eine Primzahl ist. Aber was mache ich bei den anderen Zahlen und wie bestimme ich jeweils eine Primitivwurzel? Kennt vielleicht jemand eine Homepage, auf der ein entsprechendes Beispiel gerechnet wird?

Vielen Dank und viele Grüße
Gregor

        
Bezug
Primitivwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 So 29.06.2008
Autor: mathwizard

Gauss zeigte in DA, arts 82-92, dass genau dann (mind.) eine Primitivwurzel modulo m existiert, wenn m gleich 1,2,4,p^α,2*p^α ist, mit einer ungeraden Primzahl p und einer natürlichen Zahl α.

Das finden von Beispielen ist weniger einfach, aber es gibt auch Mittel um dies "ein wenig" zu beschleunigen. Siehe hierzu auch []hier - oder auch in der ausführlicheren englischen Version.

Bezug
        
Bezug
Primitivwurzeln: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 30.06.2008
Autor: grenife

Hallo,

danke für den Link.

Die Primfaktorzerlegungen der einzelnen Zahlen sind:

61: prim
[mm] 1001:$7\cdot 11\cdot [/mm] 13$
[mm] 1331:$11^3$ [/mm]
[mm] 2662:$2\cdot 11^3$ [/mm]

Mit dem Satz von Gauß sind für $m=61, m=1331$ und $m=2662$ die primen Restklassengruppen [mm] $\mathbb{Z}_m^*$ [/mm] zyklisch.
Für $1001$ existiert keine Primitivwurzel.

Ich versuche mal die Anleitung unter [mm] http://en.wikipedia.org/wiki/Primitive_root_modulo_n#Finding_primitive_roots [/mm]

für $m=61$ vorzurechnen.
Da $m=61$ prim ist, gilt [mm] $\varphi(m)=m-1=60$. [/mm] Die Primfaktorzerlegung von $60$ ist [mm] $60=2^2\cdot [/mm] 3 [mm] \cdot [/mm] 5$. Und hier hört es dann auch schon auf mit dem leichten Rechnen, denn laut Wikipedia müsste ich jetzt mit Zahlen wie z.B. [mm] $61^{60/2}$ [/mm] etc. weiterrechnen, und hierfür müsste ich dann doch den Computer einsetzen, was vermutlich nicht in der Aufgabe vorgesehen ist.
Vielleicht kann mir ja jemand einen Tipp geben, wie ich leichter an eine beliebige Primitivwurzel kommen kann.

Vielen Dank und viele Grüße
Gregor



> Prüfen Sie, ob zu folgenden Zahlen Primitivwurzeln
> existieren, und berechnen Sie ggf. eine Primitivwurzel:
>  61; 1001; 1331; 2662
>  Hallo zusammen,
>  
> weiß bei dieser Aufgabe leider nicht, wie man sie angehen
> soll. Die Existenz kann ich zumindest für die erste Zahl
> zeigen, da 61 eine Primzahl ist. Aber was mache ich bei den
> anderen Zahlen und wie bestimme ich jeweils eine
> Primitivwurzel? Kennt vielleicht jemand eine Homepage, auf
> der ein entsprechendes Beispiel gerechnet wird?
>  
> Vielen Dank und viele Grüße
>  Gregor


Bezug
                
Bezug
Primitivwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Mo 07.07.2008
Autor: steffenhst

Hallo Gregor,
  

> für [mm]m=61[/mm] vorzurechnen.
>  Da [mm]m=61[/mm] prim ist, gilt [mm]\varphi(m)=m-1=60[/mm]. Die
> Primfaktorzerlegung von [mm]60[/mm] ist [mm]60=2^2\cdot 3 \cdot 5[/mm]. Und
> hier hört es dann auch schon auf mit dem leichten Rechnen,
> denn laut Wikipedia müsste ich jetzt mit Zahlen wie z.B.
> [mm]61^{60/2}[/mm] etc. weiterrechnen, und hierfür müsste ich dann
> doch den Computer einsetzen, was vermutlich nicht in der
> Aufgabe vorgesehen ist.
>  Vielleicht kann mir ja jemand einen Tipp geben, wie ich
> leichter an eine beliebige Primitivwurzel kommen kann.


alles richtig. Tatsächlich ist 2 eine Primitivwurzel zu 61 (die anderen sind größer 2 und das macht die Rechnung noch komplizierter). Dafür müsstest du nachweisen, dass die Ordnung von 2 60 ist. Das ist tatsächlich ziemlich schwer zu berechnen. Du könntest dir aber die Teiler von 60 nehmen und zeigen, dass für diese [mm] 2^{t}-1 [/mm] nicht durch 61 teilbar ist (ich finde gerade nicht das durchgestrichene Kongruenzzeichen) und daraus schließen, dass nur [mm] 2^{60} \equiv [/mm] 1 mod 61. Ein besserer Weg fällt mir nicht ein.

Bei den anderen ergeben sich die Primitivwurzeln ganz einfach aus den Sätzen für Gruppen [mm] \IZ_{m} [/mm] * mit m = [mm] p^{n} [/mm] (=> Aufgabe c) oder m = [mm] 2p^{n} [/mm] (=> Aufgabe d).

Grüße, Steffen    

Bezug
                        
Bezug
Primitivwurzeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mo 07.07.2008
Autor: felixf

Hallo

> alles richtig. Tatsächlich ist 2 eine Primitivwurzel zu 61
> (die anderen sind größer 2 und das macht die Rechnung noch
> komplizierter). Dafür müsstest du nachweisen, dass die
> Ordnung von 2 60 ist. Das ist tatsächlich ziemlich schwer
> zu berechnen. Du könntest dir aber die Teiler von 60 nehmen
> und zeigen, dass für diese [mm]2^{t}-1[/mm] nicht durch 61 teilbar
> ist (ich finde gerade nicht das durchgestrichene
> Kongruenzzeichen) und daraus schließen, dass nur [mm]2^{60} \equiv[/mm]
> 1 mod 61. Ein besserer Weg fällt mir nicht ein.

Einen besseren gibt es auch nicht, ausser in einer Tabelle nachzugucken wo Primitivwurzeln aufgelistet sind :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]