matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPrimideal durch Ideale def.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Primideal durch Ideale def.
Primideal durch Ideale def. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal durch Ideale def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 18.02.2015
Autor: sissile

Aufgabe
Es sei R ein kommutativer Ring mit 1 und [mm] P(\not= [/mm] R) ein Ideal von R. Beweisen Sie dass die folgenden beiden Aussagen äquivalent sind:
(i) P ist ein Primideal
(ii) Sind I,J Ideale und I*J [mm] \subseteq [/mm] P, so ist [mm] I\subseteq [/mm] P oder J [mm] \subseteq [/mm] P.

Hallo
Ich hab hier ein Bsp, indem mir absolut die Idee fehlt.

Also [mm] (i)\Rightarrow [/mm] (ii) ist trivial:
[mm] $\forall i\in [/mm] I, j [mm] \in [/mm] J$ mit $i*j [mm] \in [/mm] P [mm] \Rightarrow [/mm] i [mm] \in [/mm] P [mm] \vee [/mm] j [mm] \in [/mm] P$, d.h. [mm] I\subseteq [/mm] P [mm] \vee J\subseteq [/mm] P.

[mm] (ii)\Rightarrow [/mm] (i)
Nach Voraussetzung ist [mm] P\not= [/mm] R
Seien a,b [mm] \in [/mm] R mit [mm] ab\in [/mm] P.
ZuZeigen: [mm] a\in [/mm] P [mm] \vee [/mm] b [mm] \in [/mm] P
Wenn [mm] a\in [/mm] I, [mm] b\in [/mm] J ist sind wir fertig.

Ich hab versucht das letzte Bsp zu benutzen:
P Primideal [mm] \gdw R\setminus [/mm] P multiplikativ [mm] ist(1\in R\setminus [/mm] P, [mm] ab\in R\setminus [/mm] P [mm] \forall [/mm] a,b [mm] \in R\setminus [/mm] P.)
oder die in der Vorlesung bewiesene Äquivalenz:
P Primideal [mm] \gdw [/mm] R/P ein Integritätsbereich ist
Leider ohne Erfolg.

Ich weiß nicht was mir die  Voraussetzung mit den Idealen I,J bringt. Also wie ich sie einsetzen soll.

        
Bezug
Primideal durch Ideale def.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 18.02.2015
Autor: statler

Hi!
> Es sei R ein kommutativer Ring mit 1 und [mm]P(\not=[/mm] R) ein
> Ideal von R. Beweisen Sie dass die folgenden beiden
> Aussagen äquivalent sind:
>  (i) P ist ein Primideal
>  (ii) Sind I,J Ideale und I*J [mm]\subseteq[/mm] P, so ist
> [mm]I\subseteq[/mm] P oder J [mm]\subseteq[/mm] P.

> [mm](ii)\Rightarrow[/mm] (i)

Wenn p [mm] \in [/mm] P, dann pR [mm] \subset [/mm] P, weil P ein Ideal ist. Und weil R kommutativ mit 1 ist, ist abR = aRbR. Usw.
Gruß aus HH
Dieter


Bezug
                
Bezug
Primideal durch Ideale def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 18.02.2015
Autor: sissile

Hallo,

Danke für deine Antwort.

[mm] $abR\subseteq [/mm] abRR$
weil Einselement in R

$abR [mm] \supseteq [/mm] abRR$
weil R abgeschlossen unter Multiplikation

[mm] $\Rightarrow [/mm] abR=abRR [mm] \overbrace{=}^{\mbox{kommutativität}} [/mm] aRbR$

Sei a,b [mm] \in [/mm] R mit $ab [mm] \in [/mm] P$.
Da P Ideal folgt $abR [mm] \in [/mm] P$. Aus obigen folgt [mm] $aRbR\in [/mm] P$
Definiere
I:=(a)=aR
J:=(b)=bR

Die Multiplikation von zwei Idealen ist definiert als endliche Summe von Elementen aus IJ:
[mm] I*J=\{x_1y_1+..+x_ny_n|n\ge 0, x_1,..,x_n \in I, y_1,..,y_n \in J\} [/mm]
Also aRbR [mm] \in [/mm] I*J
Nach Voraussetzung gilt: [mm] aR=I\subseteq [/mm] P [mm] \vee [/mm] bR= [mm] J\subseteq [/mm] P
Da R ein Ring mit Einselement ist folgt [mm] a=a*1\in [/mm] I [mm] \subseteq [/mm] P [mm] \Rightarrow a\in [/mm] P bzw. b=b*1 [mm] \in [/mm] J [mm] \subseteq [/mm] P [mm] \Rightarrow [/mm] b [mm] \in [/mm] P.

Passt das so?

Bezug
                        
Bezug
Primideal durch Ideale def.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 18.02.2015
Autor: statler

Hallo!

> [mm]abR\subseteq abRR[/mm]
>  weil Einselement in R
>  
> [mm]abR \supseteq abRR[/mm]
>  weil R abgeschlossen unter
> Multiplikation
>  
> [mm]\Rightarrow abR=abRR \overbrace{=}^{\mbox{kommutativität}} aRbR[/mm]

Es ist überhaupt bei kommutativen Ringen mit 1 R = [mm] R^{2}. [/mm] Und die Linksideale sind die Rechtsideale.

>  
> Sei a,b [mm]\in[/mm] R mit [mm]ab \in P[/mm].
>  Da P Ideal folgt [mm]abR \in P[/mm].

Muß heißen abR [mm] $\subset$ [/mm] P.

> Aus obigen folgt [mm]aRbR\in P[/mm]

...aRbR [mm] $\subset$ [/mm] P

>  Definiere
>  I:=(a)=aR
>  J:=(b)=bR

>  
> Die Multiplikation von zwei Idealen ist definiert als
> endliche Summe von Elementen aus IJ:
>  [mm]I*J=\{x_1y_1+..+x_ny_n|n\ge 0, x_1,..,x_n \in I, y_1,..,y_n \in J\}[/mm]
>  
> Also aRbR [mm]\in[/mm] I*J

Nach Lage der Dinge ist aRbR = [mm] I$\cdot$J [/mm]

>  Nach Voraussetzung gilt: [mm]aR=I\subseteq[/mm] P [mm]\vee[/mm] bR=
> [mm]J\subseteq[/mm] P
>  Da R ein Ring mit Einselement ist folgt [mm]a=a*1\in[/mm] I
> [mm]\subseteq[/mm] P [mm]\Rightarrow a\in[/mm] P bzw. b=b*1 [mm]\in[/mm] J [mm]\subseteq[/mm] P
> [mm]\Rightarrow[/mm] b [mm]\in[/mm] P.

Textuell wäre da noch manches zu verbessern.
Gruß Dieter

Bezug
                                
Bezug
Primideal durch Ideale def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 18.02.2015
Autor: sissile

Danke für die Korrektur. Stimmt da gehört überall ein Teilmengen-zeichen! Schwerer Fehler von mir.

> Nach Lage der Dinge ist aRbR = I$ [mm] \cdot [/mm] $J

Ich verstehe das nicht.
Einerseits multipliziere ich bei aRbR=(a)*(b) zwei Ideale. Aber andererseits ist das ja gar nicht die Multiplikation denn die Multiplikation ist wie schon gesagt anders definiert als [mm] (a)*(b)=\{ar_1b\overline{r_1}+..+ar_n b\overline{r_n}|r_1,..,r_n, \overline{r_1},..,\overline{r_2} \in R\}. [/mm] Also müsste doch nur [mm] aRbR\subseteq [/mm] (a)*(b) und keine Gleichheit gelten.

Bezug
                                        
Bezug
Primideal durch Ideale def.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:59 Do 19.02.2015
Autor: statler

Guten Morgen!

> > Nach Lage der Dinge ist aRbR = I[mm] \cdot [/mm]J
> Ich verstehe das nicht.
>  Einerseits multipliziere ich bei aRbR=(a)*(b) zwei Ideale.
> Aber andererseits ist das ja gar nicht die Multiplikation
> denn die Multiplikation ist wie schon gesagt anders
> definiert als [mm](a)*(b)=\{ar_1b\overline{r_1}+..+ar_n b\overline{r_n}|r_1,..,r_n, \overline{r_1},..,\overline{r_2} \in R\}.[/mm]
> Also müsste doch nur [mm]aRbR\subseteq[/mm] (a)*(b) und keine
> Gleichheit gelten.

Es ist (natürlich) aRbR = [mm] (aR)$\cdot$(bR) [/mm] gemeint. Aber dann ist [mm] (aR)$\cdot$(bR) [/mm] = [mm] $\{\summe_{i=1}^{n}$a$r_{i}$b$r_{i}$'$\}$ [/mm] = [mm] $\{\summe_{i=1}^{n}$ab$r_{i}r_{i}$'$\}$ [/mm] = [mm] $\{$ab$\summe_{i=1}^{n}r_{i}r_{i}$'$\}$ [/mm] = abR. Oder kürzer [mm] (a)$\cdot$(b) [/mm] = (ab)
Und wenn aR = I und bR = J ist, dann ist offenbar [mm] (aR)$\cdot$(bR) [/mm] = [mm] I$\cdot$J. [/mm]
Gruß aus HH
Dieter


Bezug
                                                
Bezug
Primideal durch Ideale def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Do 19.02.2015
Autor: sissile

Hallo danke für die Erklärung.
Ich hab das Bsp nochmal kompakt aufgeschrieben mit deinen Erklärungen. Ich hoffe es sind keine Fehler enthalten.

[mm] (ii)\Rightarrow [/mm] (i)
Seien a ,b [mm] \in [/mm] R mit ab [mm] \in [/mm] P
[mm] (ab)=abR\subseteq [/mm] P da P Ideal ist
[mm] (ab)=abR=ab\sum_{i=1}^n r_i r_i' [/mm] = [mm] \sum_{i=1}^n [/mm] ab [mm] r_i r_i'=\sum_{i=1}^nar_ibr_i'=(a)*(b) [/mm] mit [mm] r_i,r_i' \in [/mm] R [mm] \forall 1\le [/mm] i [mm] \le [/mm] n
[mm] \Rightarrow (a)*(b)\subseteq [/mm] P [mm] \Rightarrow (a)\subseteq [/mm] P [mm] \vee [/mm] (b) [mm] \subseteq [/mm] P [mm] \Rightarrow [/mm] a [mm] \in [/mm] P [mm] \vee [/mm] b [mm] \in [/mm] P

LG,
sissi

Bezug
                                                        
Bezug
Primideal durch Ideale def.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Do 19.02.2015
Autor: statler

D'accord.

Bezug
                                                                
Bezug
Primideal durch Ideale def.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Do 19.02.2015
Autor: sissile

Merci !

Bezug
        
Bezug
Primideal durch Ideale def.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Mi 18.02.2015
Autor: UniversellesObjekt

Edit: Hier stand Quatsch.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]