Primideal, Verallgemeinerung, < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:25 So 29.11.2015 | Autor: | sissile |
Aufgabe | Es sei R ein kommutativer Ring und [mm] P(\not=R) [/mm] ein ideal von R.Beweisen Sie, dass die folgenden beiden Aussagen äquivalent sind:
(i) P ist ein Primideal
(ii) Sind I,J Ideale und I*J [mm] \subseteq [/mm] P, so ist [mm] I\subseteq [/mm] P oder I [mm] \subseteq [/mm] P
Unsere Definition von [mm] I*J:=\{x_1y_1+..+x_ny_n| n \ge 0, x_1,..,x_n \in I, y_1,.., y_n \in J\} [/mm] |
Hallo,
Für kommutative Ringe mit 1 ist das Beispiel klar - habe ich sogar mal hier im Forum als Frage gestellt - aber das steht ja nicht in der Angabe.
(i) [mm] \rightarrow [/mm] (ii) ist klar:
Seien I,J Ideale mit I*J [mm] \subseteq [/mm] P
Seien i [mm] \in [/mm] I, j [mm] \in [/mm] I so ist i*j [mm] \in [/mm] I*J [mm] \subseteq [/mm] P
Da P Primideal folgt i [mm] \in [/mm] P [mm] \vee [/mm] j [mm] \in [/mm] P
Nun meine Schwierigkeit bei (ii) [mm] \rightarrow [/mm] (i)
Seien a,b [mm] \in [/mm] R mit [mm] ab\in [/mm] P
ZZ.: a [mm] \in [/mm] P [mm] \vee [/mm] b [mm] \in [/mm] P
Da R ein kommutativer Ring ist, ist [mm] (a)=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\}
[/mm]
Ich habe nun gezeigt:
1) (ab) [mm] \subseteq [/mm] P
2) x [mm] \in [/mm] (a)*(b)
[mm] x=(\alpha_1a+n_1a)*(\beta_1*b+s_1*b)+...+(\alpha_m [/mm] a + [mm] n_m*a)*(\beta_m b+s_m [/mm] b) = [mm] ab*(\alpha_1 \beta_1 [/mm] + [mm] \alpha_1 s_1 [/mm] + [mm] n_1 \beta_1 [/mm] + [mm] n_1 s_1)+..+ab*(\alpha_m \beta_m [/mm] + [mm] \alpha_m s_m+ n_m \beta_m +n_m s_m) \in [/mm] (ab)
mit [mm] \alpha_1,..,\alpha_m, \beta_1,..,\beta_m \in [/mm] R
[mm] n_1,..,n_m,s_1,..,s_m \in \mathbb{Z}
[/mm]
Aus 1) 2) folgt zwar (a)(b) [mm] \subseteq [/mm] (ab) [mm] \subseteq [/mm] P [mm] \Rightarrow [/mm] (a) [mm] \subseteq [/mm] P [mm] \vee [/mm] (b) [mm] \subseteq [/mm] P
Aber das problem ist, dass nicht gelten muss a [mm] \in [/mm] (a) oder b [mm] \in [/mm] (b), da wir kein Einselement haben...
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:02 Mo 30.11.2015 | Autor: | hippias |
> Es sei R ein kommutativer Ring und [mm]P(\not=R)[/mm] ein ideal von
> R.Beweisen Sie, dass die folgenden beiden Aussagen
> äquivalent sind:
> (i) P ist ein Primideal
> (ii) Sind I,J Ideale und I*J [mm]\subseteq[/mm] P, so ist
> [mm]I\subseteq[/mm] P oder I [mm]\subseteq[/mm] P
>
> Unsere Definition von [mm]I*J:=\{x_1y_1+..+x_ny_n| n \ge 0, x_1,..,x_n \in I, y_1,.., y_n \in J\}[/mm]
>
> Hallo,
> Für kommutative Ringe mit 1 ist das Beispiel klar - habe
> ich sogar mal hier im Forum als Frage gestellt - aber das
> steht ja nicht in der Angabe.
>
> (i) [mm]\rightarrow[/mm] (ii) ist klar:
> Seien I,J Ideale mit I*J [mm]\subseteq[/mm] P
> Seien i [mm]\in[/mm] I, j [mm]\in[/mm] I so ist i*j [mm]\in[/mm] I*J [mm]\subseteq[/mm] P
> Da P Primideal folgt i [mm]\in[/mm] P [mm]\vee[/mm] j [mm]\in[/mm] P
>
Das genuegt nicht: Du hast bis jetzt nur gezeigt, dass mal ein [mm] $i\in [/mm] I$ und mal ein [mm] $j\in [/mm] J$ in $P$ liegt. Es muesste aber gezeigt werden, dass alle Elemente von $I$ oder $J$ in $P$ sind.
> Nun meine Schwierigkeit bei (ii) [mm]\rightarrow[/mm] (i)
> Seien a,b [mm]\in[/mm] R mit [mm]ab\in[/mm] P
> ZZ.: a [mm]\in[/mm] P [mm]\vee[/mm] b [mm]\in[/mm] P
> Da R ein kommutativer Ring ist, ist [mm](a)=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\}[/mm]
>
> Ich habe nun gezeigt:
> 1) (ab)= [mm]\alpha[/mm] ab + n ab [mm]\in[/mm] P [mm]\Rightarrow[/mm] (ab) [mm]\subseteq[/mm]
> P
> 2)
> [mm](a)*(b)=(\alpha_1a+n_1a)*(\beta_1*b+s_1*b)+...+(\alpha_m[/mm] a
> + [mm]n_m*a)*(\beta_m b+s_m[/mm] b) = [mm]ab*(\alpha_1 \beta_1[/mm] +
> [mm]\alpha_1 s_1[/mm] + [mm]n_1 \beta_1[/mm] + [mm]n_1 s_1)+..+ab*(\alpha_m \beta_m[/mm]
> + [mm]\alpha_m s_m+ n_m \beta_m +n_m s_m) \in[/mm] (ab)
> mit [mm]\alpha_1,..,\alpha_m, \beta_1,..,\beta_m \in[/mm] R
> [mm]n_1,..,n_m,s_1,..,s_m \in \mathbb{Z}[/mm]
>
> Aus 1) 2) folgt zwar (a)(b) [mm]\subseteq[/mm] (ab) [mm]\subseteq[/mm] P
> [mm]\Rightarrow[/mm] (a) [mm]\subseteq[/mm] P [mm]\vee[/mm] (b) [mm]\subseteq[/mm] P
>
> Aber das problem ist, dass nicht gelten muss a [mm]\in[/mm] (a) oder
> b [mm]\in[/mm] (b), da wir kein Einselement haben...
Tip: Definiere $I:=(a)$ und $J:= [mm] \{x\in R|ax\in P\}$....
[/mm]
> LG,
> sissi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:00 Mo 30.11.2015 | Autor: | sissile |
Hallo,
Ich bin gerade draufgekommen, dass ja a [mm] \in [/mm] $ [mm] (a):=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\} [/mm] $ gelten muss mit [mm] \alpha=0_R [/mm] und [mm] n=1_{\mathbb{Z}}. [/mm] Wie dumm von mir das zu bezweifeln...
Also stimmt der Beweis zu (ii) [mm] \rightarrow [/mm] (i) im ersten Post oder?
Weil du würdest ja genauso in deinen Beweis verwenden am Ende a [mm] \in (a):=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\}.
[/mm]
Bei (i) [mm] \rightarrow [/mm] (ii) hast du natürlich recht!
Angenommen I [mm] \not\subseteq [/mm] P [mm] \wedge [/mm] J [mm] \not\subseteq [/mm] P dann [mm] \exists [/mm] i [mm] \in [/mm] I: i [mm] \not\in [/mm] P und [mm] \exists [/mm] j [mm] \in [/mm] J: j [mm] \not\in [/mm] P
Da i*j [mm] \in [/mm] I*J [mm] \subset [/mm] P und P ein Primideal ist folgt i [mm] \in [/mm] P oder j [mm] \in [/mm] P.
Beides ein Widerspruch.
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:52 Di 01.12.2015 | Autor: | hippias |
> Hallo,
>
> Ich bin gerade draufgekommen, dass ja a [mm]\in[/mm] [mm](a):=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\}[/mm]
> gelten muss mit [mm]\alpha=0_R[/mm] und [mm]n=1_{\mathbb{Z}}.[/mm] Wie dumm
> von mir das zu bezweifeln...
> Also stimmt der Beweis zu (ii) [mm]\rightarrow[/mm] (i) im ersten
> Post oder?
Das ist in Ordnung. Meinen Annullator braucht man nicht.
> Weil du würdest ja genauso in deinen Beweis verwenden am
> Ende a [mm]\in (a):=\{\alpha a + na| \alpha \in R, n \in \mathbb{Z}\}.[/mm]
>
>
>
> Bei (i) [mm]\rightarrow[/mm] (ii) hast du natürlich recht!
> Angenommen I [mm]\not\subseteq[/mm] P [mm]\wedge[/mm] J [mm]\not\subseteq[/mm] P dann
> [mm]\exists[/mm] i [mm]\in[/mm] I: i [mm]\not\in[/mm] P und [mm]\exists[/mm] j [mm]\in[/mm] J: j [mm]\not\in[/mm]
> P
> Da i*j [mm]\in[/mm] I*J [mm]\subset[/mm] P und P ein Primideal ist folgt i
> [mm]\in[/mm] P oder j [mm]\in[/mm] P.
> Beides ein Widerspruch.
O.K.
>
> LG,
> sissi
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:09 Di 01.12.2015 | Autor: | sissile |
Danke für die Hilfe!
LG,
sissi
|
|
|
|