Primideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:41 Mi 15.08.2007 | Autor: | baskolii |
Aufgabe | Seien [mm] $P_1,...,P_k$ [/mm] Primideale und I ein Ideal das in [mm] $\bigcup_{i=1}^{k}P_i$ [/mm] enthalten ist. Zeige [mm] $I\subseteq P_i$ [/mm] fuer ein $i$. |
Meine Idee war ja Induktion ueber k, da man die Aussage fuer $k=1$ oder 2 leicht zeigen kann. Aber beim Induktionsschritt hapert es, bzw. ich benutze nirgendwo, dass [mm] $P_i$ [/mm] ein Primideal ist.
Meine Idee: Wenn [mm] $I\subseteq\bigcup_{i=1}^{k+1}P_i$, [/mm] dann ist [mm] $I\bigcap (P_k\bigcup P_{k+1})\subseteq P_k\bigcup P_{k+1}$ [/mm] und damit [mm] $I\subseteq P_k$ [/mm] oder [mm] $I\subseteq P_{k+1}$. [/mm] Also sagen wir [mm] $I\subseteq P_k$ [/mm] und dann ist [mm] $I\subseteq\bigcup_{i=1}^{k}P_i$
[/mm]
und mit Induktion folgt [mm] $I\in P_i$ [/mm] fuer ein i.
Hab ich da was falsch gemacht, oder braucht man wirklich nicht, dass die [mm] $P_i$ [/mm] Primideale sind?
Danke schon mal,
Verena
|
|
|
|
> Seien [mm]P_1,...,P_k[/mm] Primideale und I ein Ideal das in
> [mm]\bigcup_{i=1}^{k}P_i[/mm] enthalten ist. Zeige [mm]I\subseteq P_i[/mm]
> fuer ein [mm]i[/mm].
> Meine Idee war ja Induktion ueber k, da man die Aussage
> fuer [mm]k=1[/mm] oder 2 leicht zeigen kann. Aber beim
> Induktionsschritt hapert es, bzw. ich benutze nirgendwo,
> dass [mm]P_i[/mm] ein Primideal ist.
> Meine Idee: Wenn [mm]I\subseteq\bigcup_{i=1}^{k+1}P_i[/mm], dann
> ist [mm]I\bigcap (P_k\bigcup P_{k+1})\subseteq P_k\bigcup P_{k+1}[/mm]
> und damit [mm]I\subseteq P_k[/mm] oder [mm]I\subseteq P_{k+1}[/mm]. Also
> sagen wir [mm]I\subseteq P_k[/mm] und dann ist
> [mm]I\subseteq\bigcup_{i=1}^{k}P_i[/mm]
> und mit Induktion folgt [mm]I\in P_i[/mm] fuer ein i.
Wenn [mm]I\subseteq\bigcup_{i=1}^{k+1}P_i[/mm], dann gibt es 3 Möglichkeiten:
[mm]I\subseteq\bigcup_{i=1}^{k}P_i[/mm]. Nach Induktionsvoraussetzung ist dann aber [mm]I\subseteq P_i[/mm] fuer ein i. ODER
[mm]I\subseteq P_{k+1}[/mm] und du bist auch fertig
ODER
I hat Elemente aus [mm]\bigcup_{i=1}^{k}P_i[/mm] und [mm] P_{k+1}. [/mm] Du müsstest nun zeigen, dass das nicht möglich ist.
> Hab ich da was falsch gemacht, oder braucht man wirklich
> nicht, dass die [mm]P_i[/mm] Primideale sind?
>
> Danke schon mal,
> Verena
|
|
|
|