matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPrimideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Primideal
Primideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Fr 13.10.2006
Autor: Denny22

Aufgabe
[mm] $V\subset\IQ$ [/mm] Bewertungsring von [mm] $\IQ$ [/mm]
$I$ maximales Ideal von $V$
Da nun [mm] $1\in V\Rightarrow\IZ\subset [/mm] V$
Daher ist [mm] $\IZ\cap [/mm] I$ ein Primideal von [mm] $\IZ$ [/mm]

Hallo an alle,

kurze Frage: Ich finde keine plausible Erklärung dafür, dass

[mm] $\IZ\cap [/mm] I$

ein Primideal ist. Kann mir einer erklären, wieso das so sein muss?

Ich danke euch.

Denny

P.S.: Diese Frage wurde in keinem anderen Forum und auf keiner anderen Seite gestellt.

        
Bezug
Primideal: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Sa 14.10.2006
Autor: felixf

Hallo Denny!

> [mm]V\subset\IQ[/mm] Bewertungsring von [mm]\IQ[/mm]
>  [mm]I[/mm] maximales Ideal von [mm]V[/mm]
>  Da nun [mm]1\in V\Rightarrow\IZ\subset V[/mm]
>  Daher ist [mm]\IZ\cap I[/mm]
> ein Primideal von [mm]\IZ[/mm]
>  Hallo an alle,
>  
> kurze Frage: Ich finde keine plausible Erklärung dafür,
> dass
>  
> [mm]\IZ\cap I[/mm]
>  
> ein Primideal ist. Kann mir einer erklären, wieso das so
> sein muss?

Dies ist ein Spezialfall von folgender, viel allgemeinerer Behaputung: Seien $R$ und $S$ zwei Ringe mit $R [mm] \subseteq [/mm] S$, und sei $P$ ein Primideal in $S$. Dann ist $P [mm] \cap [/mm] R$ ein Primideal in $R$.

Das folgt ganz einfach aus der Primidealeigenschaft: Ein Ideal $P [mm] \subseteq [/mm] R$ eines Ringes $R$ ist genau dann ein Primideal, wenn fuer alle $a, b [mm] \in [/mm] R$ aus $a b [mm] \in [/mm] P$ folgt $a [mm] \in [/mm] P$ oder $b [mm] \in [/mm] P$.

Wenn die Eigenschaft nun fuer alle $a, b [mm] \in [/mm] S$ gilt fuer $P$, dann sicher auch fuer alle $a, b [mm] \in [/mm] R$ mit $P [mm] \cap [/mm] R$ (da $a b [mm] \in [/mm] R$ ist).

LG Felix


Bezug
                
Bezug
Primideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:40 Sa 14.10.2006
Autor: Denny22

Danke,

ist ja eigentlich ganz einfach gewesen.

Ciao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]