matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPrime Restklassengruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Prime Restklassengruppe
Prime Restklassengruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prime Restklassengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 09.06.2010
Autor: mezzo

Hallo zusammen,

ich habe eine Verständnisfrage zur primen Restklassengruppe.

Wikipedia beschreibt die prime Restklassengruppe wie folgt:

> Die prime Restklassengruppe ist die Gruppe der primen Restklassen bezüglich eines Moduls n

In meinem Mathebuch (Algebraische Grundlagen der Informatik) steht folgendes Beispiel:

[mm] \IZ_{7} [/mm] * = { [mm] \IZ_{7} [/mm] - {0} }

Folglich wären in dieser primen Restklassengruppe ja die Elemente 1, 2, 3, 4, 5 und 6 bzw. [mm] \IZ_{7} [/mm] * = {1, 2, 3, 4, 5, 6}

Nun meine Frage:

In der Definition steht, dass die prime Restklassengruppe die primen Restklassen enthält.

Eine Restklasse ist definiert als eine Menge an Zahlen und wird ja z.B. als [mm] [1]\equiv [/mm] m beschrieben.

Wieso enthält diese prime Restklassengruppe nun konkrete Werte (nämlich z.B.: {1, 2, 3, 4, 5, 6, 7} und nicht die einzelnen Restklassen ([1] [mm] \equiv [/mm] m, [2] [mm] \equiv [/mm] m, etc. (die doch darin eigentlich enthalten sein sollten))?

Oder schreibt man einfach die Werte hinein, meint damit aber eigentlich die Restklassen?

Ich stehe da echt auf dem Schlauch...

Vielen Dank für eure Hilfe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Prime Restklassengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mi 09.06.2010
Autor: leduart

Hallo
es ist üblich statt der Restklassen die kleinsten positiven Repräsentanten zu schreiben.
Gruss leduart

Bezug
                
Bezug
Prime Restklassengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 09.06.2010
Autor: mezzo

Ah, das hilft mir weiter!

Also sind damit eigentlich schon diese Restklassen gemeint und in Wirklichkeit auch mehr Elemente als nur (in diesem Beispiel) 1, 2, 3, 4, 5 und 6 enthalten?

Bezug
                        
Bezug
Prime Restklassengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 09.06.2010
Autor: Schmetterfee


> Ah, das hilft mir weiter!
>  
> Also sind damit eigentlich schon diese Restklassen gemeint
> und in Wirklichkeit auch mehr Elemente als nur (in diesem
> Beispiel) 1, 2, 3, 4, 5 und 6 enthalten?

Ja damit hast du völlig recht
diese Zahlen Repräsentieren die Gruppen [mm] 1+\IZ_{7}, [/mm] 2+ [mm] \IZ_{7} [/mm] usw...
also ist in 1 die 1 aber auch 8,15 usw..enthalten...

Reicht dir das als Erklärung?

LG Schmetterfee

Bezug
                                
Bezug
Prime Restklassengruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mi 09.06.2010
Autor: mezzo

Perfekt. Vielen Dank für eure Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]