matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Potenzreihenentwicklung
Potenzreihenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 23.06.2012
Autor: Cafearabica

Aufgabe
Unter verwendung der Formel [mm] $\sum\limits_{n=0}^{\infty} [/mm] = [mm] z^{n} [/mm] = [mm] \frac{1}{1-z}$ [/mm] für $| z | < 1$ (Summenformel der geometrischen Reihe entwickle man die folende Funktion in eine Potenzreihe mit dr Entwicklungsstelle [mm] $z_{0}$ [/mm] und vestimme den zugehörigen Konvergenzradius.
(a) [mm] $\frac{1}{1-2z}$ [/mm] mit [mm] $z_{0} [/mm] = 0$
(b) $f(z) = [mm] \frac{2}{3-z}$ [/mm] mit [mm] $z_{0} [/mm] = 2$

Ich kann die vorgegebene Lösung der Teilaufgabe (b)
Aufgabe nicht nachvollziehen. Mit dem Ansatz [mm] $\sum\limits_{n=0}^{\infty} (z-z_{0})^{n} [/mm] = [mm] \frac{1}{1-(z-z_{0})}$ [/mm] kommen wir bei (a) auf [mm] $\sum\limits_{n=0}^{\infty} 2^{n} \cdot z^{n}$. [/mm] Das kann ich nachvollziehen. Bei (b) kenne ich die Lösung $f(z) = [mm] \frac{2}{3-z} [/mm] = [mm] \frac{2}{3-(z-z_{0}+z_{0})} =\frac{2}{3-(z-2)-2} [/mm] = [mm] \frac{2}{1-(z-2)} [/mm] = 2 [mm] \sum\limits_{n=0}^{\infty} (z-2)^{n}$ [/mm] Dass der Konvergenzradius dann hier nach Cauchy-Hamard 1 ist, ist klar. ABER wo kommt bitte auf einmal das [mm] $z-z_{0}+z_{0}$ [/mm] im Nenner her? dieses [mm] $+z_{0}$ [/mm] kommt für mich noch aus dem nichts. Kann mir da einer helfen? 

Liebe Grüße,

Cafearabica



Ich habe diese Frage auf in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 23.06.2012
Autor: teo

Hallo,

> Unter verwendung der Formel [mm]\sum\limits_{n=0}^{\infty} = z^{n} = \frac{1}{1-z}[/mm]
> für [mm]| z | < 1[/mm] (Summenformel der geometrischen Reihe
> entwickle man die folende Funktion in eine Potenzreihe mit
> dr Entwicklungsstelle [mm]z_{0}[/mm] und vestimme den zugehörigen
> Konvergenzradius.
>  (a) [mm]\frac{1}{1-2z}[/mm] mit [mm]z_{0} = 0[/mm]
>  (b) [mm]f(z) = \frac{2}{3-z}[/mm]
> mit [mm]z_{0} = 2[/mm]
>  Ich kann die vorgegebene Lösung der
> Teilaufgabe (b)
>  Aufgabe nicht nachvollziehen. Mit dem Ansatz
> [mm]\sum\limits_{n=0}^{\infty} (z-z_{0})^{n} = \frac{1}{1-(z-z_{0})}[/mm]

hier müsste man wenn [mm] z_0 \neq [/mm] 0 wäre auch [mm] -z_0 [/mm] + [mm] z_0 [/mm] schreiben!

> kommen wir bei (a) auf [mm]\sum\limits_{n=0}^{\infty} 2^{n} \cdot z^{n}[/mm].
> Das kann ich nachvollziehen. Bei (b) kenne ich die Lösung
> [mm]f(z) = \frac{2}{3-z} = \frac{2}{3-(z-z_{0}+z_{0})} =\frac{2}{3-(z-2)-2} = \frac{2}{1-(z-2)} = 2 \sum\limits_{n=0}^{\infty} (z-2)^{n}[/mm]
> Dass der Konvergenzradius dann hier nach Cauchy-Hamard 1
> ist, ist klar. ABER wo kommt bitte auf einmal das
> [mm]z-z_{0}+z_{0}[/mm] im Nenner her? dieses [mm]+z_{0}[/mm] kommt für mich
> noch aus dem nichts. Kann mir da einer helfen? 

Naja du darfst ja am Nenner nichts verändern also musst du wenn du ein [mm] z_0 [/mm] abziehst gleichzeitig wieder ein [mm] z_0 [/mm] hinzufügen. Das müsste man bei a) eigentlich auch machen, kann es aber lassen, da [mm] z_0 [/mm] = 0 ist. Bei b) ist [mm] z_0 [/mm] = 2. Also musst du [mm] -z_0 [/mm] + [mm] z_0 [/mm] "hinzufügen"

Hoffe das hilft.  

> Liebe Grüße,
>  
> Cafearabica
>  
>
>

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]