matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPotenzreihenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Potenzreihenentwicklung
Potenzreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 18.05.2005
Autor: Melli9181

Hallo!
Die andere Frage wegen den Potenzreihen hat mir ja schon sehr geholfen, aber geht das bei einer Entwicklung nicht um Null genauso?
Meine Aufgaben wäre: [mm] \bruch{1}{z ^{2}-5z+6} [/mm] um [mm] z_{0}=0 [/mm]
und [mm] \bruch{1}{(z-i) ^{3}} [/mm] um  [mm] z_{0}=-i [/mm] zu entwickeln.

Meine bisherige Lösung:
[mm] \bruch{1}{z ^{2}-5z+6}=\bruch{1}{z-3}-\bruch{1}{z -2}. [/mm] Mit der geometrischen Reihe komme ich auf:
[mm] \bruch{1}{z ^{2}-5z+6}=- \bruch{1}{3} \summe_{n=o}^{ \infty}( \bruch{1}{3})^{n}z^{n} [/mm] +  [mm] \bruch{1}{2} \summe_{n=o}^{ \infty}( \bruch{1}{2})^{n}z^{n} [/mm]
Aber wie fasse ich das jetzt zu einer Reihe zusammen? Und der Konvergenzradius ist 2, oder? Weil die nächste Polstelle bei 2 ist.

Aber jetzt die zweite Aufgabe???
Das kann  man doch gar nicht als Partialbruchzerlegung schreiben, oder?
Wenn ich versuche als geo Reihe zu schreiben, komme ich auf:
[mm] \bruch{1}{(z-i) ^{3}}=(\bruch{1}{(z-i) })^{3}=(\bruch{-1}{i}\summe_{n=o}^{ \infty}\bruch{1}{i})^{n}z^{n})^ [/mm] {3}.
Aber jetzt??
Der Konvergenzradius ist auch wieder 2, oder?
Ich hoffe mir kann jemand helfen?
Grüßle und danke, Melli

        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 18.05.2005
Autor: Julius

Hallo melli!

>  Die andere Frage wegen den Potenzreihen hat mir ja schon
> sehr geholfen, aber geht das bei einer Entwicklung nicht um
> Null genauso?
>  Meine Aufgaben wäre: [mm]\bruch{1}{z ^{2}-5z+6}[/mm] um [mm]z_{0}=0[/mm]
> und [mm]\bruch{1}{(z-i) ^{3}}[/mm] um  [mm]z_{0}=-i[/mm] zu entwickeln.
>  
> Meine bisherige Lösung:
>  [mm]\bruch{1}{z ^{2}-5z+6}=\bruch{1}{z-3}-\bruch{1}{z -2}.[/mm] Mit
> der geometrischen Reihe komme ich auf:
> [mm]\bruch{1}{z ^{2}-5z+6}=- \bruch{1}{3} \summe_{n=o}^{ \infty}( \bruch{1}{3})^{n}z^{n}[/mm]
> +  [mm]\bruch{1}{2} \summe_{n=o}^{ \infty}( \bruch{1}{2})^{n}z^{n}[/mm]

[ok]

> Aber wie fasse ich das jetzt zu einer Reihe zusammen?

Ganz einfach:

[mm] $\summe_{n=0}^{\infty} \left[ \left( \bruch{1}{2} \right)^{n+1} - \left( \bruch{1}{3} \right)^{n+1} \right] z^n$ [/mm]

> Und
> der Konvergenzradius ist 2, oder? Weil die nächste
> Polstelle bei 2 ist.

[daumenhoch]
  

> Aber jetzt die zweite Aufgabe???
>  Das kann  man doch gar nicht als Partialbruchzerlegung
> schreiben, oder?
>  Wenn ich versuche als geo Reihe zu schreiben, komme ich
> auf:
>  [mm]\bruch{1}{(z-i) ^{3}}=(\bruch{1}{(z-i) })^{3}=(\bruch{-1}{i}\summe_{n=o}^{ \infty}\bruch{1}{i})^{n}z^{n})^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> {3}.
>  Aber jetzt??
>  Der Konvergenzradius ist auch wieder 2, oder?
>  Ich hoffe mir kann jemand helfen?

Die Aufgabe ist mal wieder nicht so einfach oder ich bin zu blöd eine einfache Lösung zu sehen. ;-)

Zunächst einmal muss man ja um $z=-i$ herum entwickeln, das scheinst du überlesen zu haben.

Es gilt ja:

$\frac{1}{1-\frac{z+1}{2i}} = \sum\limits_{n=0}^{\infty} \left( \frac{1}{2i} \right)^n \cdot (z+i)^n$.

Ableiten liefert:

$\frac{1}{2i} \cdot \frac{1}{\left( 1 - \frac{z+1}{2i} \right)^2} = \sum\limits_{n=1}^{\infty} n \left( \frac{1}{2i} \right)^n (z+i)^{n-1}$.

Erneutes Ableiten führt zu

(*) $-\frac{1}{2} \cdot \frac{1}{\left( 1 - \frac{z+1}{2i} \right)^3} = \sum\limits_{n=2}^{\infty} n (n-1) \left( \frac{1}{2i} \right)^n (z+i)^{n-2} =  \sum\limits_{n=0}^{\infty} (n+2)(n+1) \left( \frac{1}{2i} \right)^{n+2} (z+i)^n$.

Andererseits ist:

(**) $\frac{1}{(z-i)^3} = \frac{1}{(z+i-2i)^3} = \frac{1}{\left(\frac{z+i}{2i} -1 \right)^3} = - \frac{1}{\left( 1 - \frac{z+i}{2i} \right)^3$.


(*) und (**) zusammen liefern die Lösung.

Viele Grüße
Julius


Bezug
                
Bezug
Potenzreihenentwicklung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Do 19.05.2005
Autor: Melli9181

Hallo Julius!
Vielen Dank!
Die Aufgabe war wohl wirklich nicht so einfach, aber jetzt ist es mir klar!
Grüßle, Melli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]