matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPotenzreihenentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Potenzreihenentwicklung
Potenzreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:42 Fr 10.10.2008
Autor: meg

Aufgabe
[mm] \summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n [/mm] Potenzreihenenticklung in f(z) = [mm] \bruch{e^z}{z+1}. [/mm]

Wie kann man berechnen, dass

a) [mm] \summe_{n=0}^{\infty} a_{n} (\pi )^n [/mm] konvergiert

b) [mm] a_{1}=\bruch{\pi}{1+\pi^2} [/mm] ?

        
Bezug
Potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Fr 10.10.2008
Autor: pelzig


> [mm]\summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n[/mm] Potenzreihenenticklung in f(z) = [mm]\bruch{e^z}{z+1}.[/mm]

Was hat die Reihe mit der Funktion $f(z)$ zu tun? Oder sind das zwei unabhängige Aufgaben? Schreibe mal die Aufgabe mal genauer hin.

Gruß, Robert

Bezug
                
Bezug
Potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:57 Fr 10.10.2008
Autor: meg


> > [mm]\summe_{n=0}^{\infty} a_{n} (z-i*\pi )^n[/mm]
> Potenzreihenenticklung in f(z) = [mm]\bruch{e^z}{z+1}.[/mm]
>  Was hat die Reihe mit der Funktion [mm]f(z)[/mm] zu tun? Oder sind
> das zwei unabhängige Aufgaben? Schreibe mal die Aufgabe mal
> genauer hin.
>  
> Gruß, Robert


Potenzreihenentwicklung VON nicht IN, sorry!!




Bezug
        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:10 Fr 10.10.2008
Autor: pelzig


> b) [mm]a_{1}=\bruch{\pi}{1+\pi^2}[/mm] ?

Du kannst die [mm] $a_k$ [/mm] ja einfach mal ausrechnen. Durch die Substitution [mm] $z:=z+i\pi$ [/mm] erhälst du

1) [mm] $\sum_{k\ge0}a_kz^k=f(z+i\pi)=\frac{-e^z}{z+i\pi+1}$. [/mm]
2) [mm] $\frac{-e^z}{z+i\pi+1}\cdot(z+i\pi+1)=-e^z=-\sum_{k\ge0}\frac{1}{k!}z^k$ [/mm]

Daraus folgt:

3) [mm] $\left(\sum_{k\ge1}a_{k-1}z^k\right)+(1+i\pi)\left(\sum_{k\ge0}a_kz^k\right)=-\sum_{k\ge0}\frac{1}{k!}z^k$ [/mm]

Durch Koeffizientenvergleich erhälst du eine rekursive Darstellung für [mm] $a_k$. [/mm] Leider habe ich mich auf dem Weg irgendwo verrechnet, vielleicht hast du ja mehr Erfolg.

Gruß, Robert

Bezug
        
Bezug
Potenzreihenentwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 12.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]