matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPotenzreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Potenzreihen
Potenzreihen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 20.02.2012
Autor: fe11x

Aufgabe
Man betrachte die Potenzreihe P(z)= [mm] \summe_{n=1}^{\infty} \bruch{1}{n^{2}}*z^{n}. [/mm]
Man suche den Konvergenzradius.
Ist die Potenzreihe als Funktion auf der offenen Kugel mit Radius = Potenzradius stetig?
Ist die Potenzreihe als Funktion auf der abgeschlossenen Kugel stetig?
Wenn ja, begründe warum!


hallo zusammen.
hätte ein paar fragen zu obiger aufgabe
das die potenzreihe konvergenzradius 1 hat, ist nicht schwer zu bestimmen.
jedoch weiß ich einfach nicht wie der konvergenzradius mit der stetigkeit zusammenhängt.

was ich weiß, ist, dass ich um jeden punkt in der offenen kugel ein [mm] \delta [/mm] > 0 finde, sodass dise [mm] \delta [/mm] - Kugel voll im Konvergenzkreis liegt. ich weiß nicht ob mir das jetzt was hilft, aber das ist hald einfach die definition einer offenen Menge.

bitte um hilfe

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mo 20.02.2012
Autor: donquijote


> Man betrachte die Potenzreihe P(z)= [mm]\summe_{n=1}^{\infty} \bruch{1}{n^{2}}*z^{n}.[/mm]
>  

Aus [mm] \left| \bruch{1}{n^{2}}*z^{n}\right|\le\frac{1}{n^2} [/mm] für [mm] |z|\le [/mm] 1 folgt, dass die Reihe auf der abgeschlossenen Einheitskreisscheibe gleichmäßig konvergiert. Daher ist die Grenzfunktion dort stetig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]