matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:15 Mi 12.05.2010
Autor: capablanca

Aufgabe
Entwickeln Sie die folgende Funktion in Potenzreihen um den Nullpunkt.

[mm] f(x)=(x-1)e^x+1 [/mm]

Hallo, ich habe ein Ansatz bei dieser Aufgabe aber ich bin nicht sicher ob dieser Ansatz richtig ist:

Ansatz:
Entwicklung einer Funktion in eine Potenzreihe (Mac Laurinsche Reihe)
also:
[mm] f(x)=f(0)+\bruch{f'(0)}{1!}x^1+\bruch{f''(0)}{2!}x^2+\bruch{f'''(0)}{3!}x^3 [/mm] ...
für [mm] e^x [/mm] gilt:
[mm] e^x=1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!} [/mm]

also:
[mm] (x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}]+1 [/mm]

jetzt muss man von (x-1) erstmal drei Ableitungen bilden und in die Mac Laurinsche Reihe einsetzen.

ist das Vorgehen korrekt? Würde mich über Tipps freuen!

gruß capablanca

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 12.05.2010
Autor: fred97


> Entwickeln Sie die folgende Funktione in Potenzreihen um
> den Nullpunkt.
>  
> [mm]f(x)=(x-1)e^x+1[/mm]
>  Hallo, ich habe ein Ansatz bei dieser Aufgabe aber ich bin
> nicht sicher ob dieser Ansatz richtig ist:
>  
> Ansatz:
>  Entwicklung einer Funktion in eine Potenzreihe (Mac
> Laurinsche Reihe)
>  also:
>  
> [mm]f(x)=f(0)+\bruch{f'(0)}{1!}x^1+\bruch{f''(0)}{2!}x^2+\bruch{f'''(0)}{3!}x^3[/mm]
> ...
>  für [mm]e^x[/mm] gilt:
>  [mm]e^x=1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}[/mm]


Besser:  [mm]e^x=1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}+ ...[/mm]

>  
> also:
>  
> [mm](x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}]+1[/mm]


Besser:

[mm](x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}+ ...]+1[/mm]

>  
> jetzt muss man von (x-1) erstmal drei Ableitungen bilden


Was ist los ??? wieso von x-1


> und in die Mac Laurinsche Reihe einsetzen.


?????????????????

>  
> ist das Vorgehen korrekt?

nein. Warum multiplzierst Du das

[mm](x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}+ ...]+1[/mm]

nicht aus ??. Dann sortiere nach Potenzen von x

FRED






Würde mich über Tipps freuen!

>  
> gruß capablanca


Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Mi 12.05.2010
Autor: capablanca

Ah so, ok also ausmultiplzieren:$ [mm] (x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}+ [/mm] ...]+1 $

[mm] x-1+\bruch{x^2-x}{1!}+\bruch{x^3-x^2}{2!}+\bruch{x^4-x^3}{3!}+1 [/mm]

also:

[mm] x+\bruch{x^2-x}{1!}+\bruch{x^3-x^2}{2!}+\bruch{x^4-x^3}{3!} [/mm]

und wie gehe ich weiter am besten vor?
  


Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 12.05.2010
Autor: angela.h.b.


> Ah so, ok also ausmultiplzieren:[mm] (x-1)[1+\bruch{x^1}{1!}+\bruch{x^2}{2!}+\bruch{x^3}{3!}+ ...]+1[/mm]
>  
> [mm]x-1+\bruch{x^2-x}{1!}+\bruch{x^3-x^2}{2!}+\bruch{x^4-x^3}{3!}+1[/mm]

Hallo,

das Ergebnis Deiner Multiplikation ist grottenfalsch - weil Du die Pünktchen schon wieder nicht hinschreibst.

>  
> also:
>  
> [mm]x+\bruch{x^2-x}{1!}+\bruch{x^3-x^2}{2!}+\bruch{x^4-x^3}{3!}[/mm]
>  
> und wie gehe ich weiter am besten vor?

Die Pünktchen hinschreiben und dann das tun, was Dir Fred gesagt hat.

Gruß v. Angela

>    
>  


Bezug
                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 12.05.2010
Autor: capablanca

Stimmt, also mit Pünktchen und nach Potenzen sortiert:

$ [mm] x+\bruch{-x+x^2}{1!}+\bruch{-x^2+x^3}{2!}+\bruch{-x^3+x^4}{3!}......$ [/mm]

was ist der nächste Schritt, die Ableitungen?

gruß capablanca

Bezug
                                        
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Mi 12.05.2010
Autor: capablanca

Upps es war bestimmt so gemeint : [mm] x+\bruch{x-1}{1}x+\bruch{x-1}{2}x^2+\bruch{x-1}{6}x^3...... [/mm]

Aber die Aufgabe ist noch nicht gelöst, oder?

gruß capablanca


Bezug
                                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mi 12.05.2010
Autor: schachuzipus

Hallo capablanca,

> Stimmt, also mit Pünktchen und nach Potenzen sortiert:
>
> [mm]x+\bruch{-x+x^2}{1!}+\bruch{-x^2+x^3}{2!}+\bruch{-x^3+x^4}{3!}......[/mm] [ok]

Das stimmt, sortiere es nun nach Potenzen von x, das ist auch in deiner nächsten Mitteilung noch falsch!

Nach Potenzen von x sortieren, heißt, es zu schreiben als [mm] $a_0\cdot{}x^0+a_1\cdot{}x^1+a_2\cdot{}x^3+a_4\cdot{}x^4+...$ [/mm] wobei in den [mm] $a_i$ [/mm] kein x mehr auftauchen darf.



Fasse nun mal mit klarem Kopf zusammen, es ist eine einfache Erweiterung, die du seit der 5 Klasse kannst ...

>  
> was ist der nächste Schritt, die Ableitungen?

Warum willst du permanent ableiten??

Erkläre mal deine Gedanken dazu ...

>  
> gruß capablanca


LG

schachuzipus

Bezug
                                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mi 12.05.2010
Autor: capablanca

Danke für den Tipp!
Ich arbeite mich erst in das Thema ein, deswegen bin ich mir noch unsicher wie genau ich vorgehen soll und ich habe in eipaar Übungsaufgaben gesehen wie die mit Hilfe der Mac Laurinsche Reihe (mit Ableitungen) gelöst wurden. aber anscheinend ist das kein "Rezept" :-)

ich denke, dass ich jetzt die richtige Lösung raus habe, und zwar:

Brüche auseinander ziehen und nach Potenzen sortieren:

[mm] x-\bruch{x}{1}+\bruch{x^2}{1}-\bruch{x^2}{2}+\bruch{x^3}{2}-\bruch{x^3}{6}+\bruch{x^4}{6}-\bruch{x^4}{24}.... [/mm]

-->

Lösung:

[mm] 0+\bruch{x^2}{2}+\bruch{x^3}{3}+\bruch{x^4}{8}.... [/mm]

das ist doch richtig, oder?

gruß capablanca

Bezug
                                                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Mi 12.05.2010
Autor: schachuzipus

Hallo,

> Danke für den Tipp!
>  Ich arbeite mich erst in das Thema ein, deswegen bin ich
> mir noch unsicher wie genau ich vorgehen soll und ich habe
> in eipaar Übungsaufgaben gesehen wie die mit Hilfe der Mac
> Laurinsche Reihe (mit Ableitungen) gelöst wurden. aber
> anscheinend ist das kein "Rezept" :-)

Na, die Potenzreihe eines Polynoms ist das Polynom selbst, die Potenzreihe der Exponentialfkt. hast du auch benutzt, dann nur alles ausmultipliziert.

Damit hast du schon die gesuchte Potenzreihe ...

>  
> ich denke, dass ich jetzt die richtige Lösung raus habe,
> und zwar:
>  
> Brüche auseinander ziehen und nach Potenzen sortieren:
>  
> [mm]x-\bruch{x}{1}+\bruch{x^2}{1}-\bruch{x^2}{2}+\bruch{x^3}{2}-\bruch{x^3}{6}+\bruch{x^4}{6}-\bruch{x^4}{24}....[/mm]
>  
> -->
>  
> Lösung:
>  
> [mm]0+\bruch{x^2}{2}+\bruch{x^3}{3}+\bruch{x^4}{8}....[/mm]
>  
> das ist doch richtig, oder?

Das stimmt fast, beachte die Fakultäten im Nenner!

Du hast [mm] $\frac{x^2}{1!}-\frac{x^2}{2!}=\frac{2x^2}{2!}-\frac{x^2}{2!}=\frac{2x^2-x^2}{2!}=\frac{x^2}{2!}$ [/mm]

Weiter [mm] $\frac{x^3}{2!}-\frac{x^3}{3!}=\frac{3x^3}{3!}-\frac{x^3}{3!}=\frac{2x^3}{3!}$ [/mm]

Und [mm] $\frac{x^4}{3!}-\frac{x^4}{4!}=\frac{4x^4-x^4}{4!}=\frac{3x^4}{4!}$ [/mm]

Usw.

Also [mm] $\frac{x^2}{2!}+\frac{2x^3}{3!}+\frac{3x^4}{4!}+\frac{4x^5}{5!}+\ldots$ [/mm]

Versuche mal, das als geschlossenen Ausdruck darzustellen, also als Reihe ...

Gruß

schachuzipus

>  
> gruß capablanca


Bezug
                                                                
Bezug
Potenzreihen: danke euch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Mi 12.05.2010
Autor: capablanca

Danke euch für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]