matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Ableitung
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 29.01.2014
Autor: gotoxy86

[mm] f(x)=\summe_{n=0}^{\infty}\br{x^n}{(n+1)!} [/mm]

[mm] f'(x)=\summe_{n=1}^{\infty}\br{nx^{n-1}}{(n+1)!} [/mm]

Warum hat sich der Laufindex erhöht?

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 29.01.2014
Autor: Richie1401

Hallo,

> [mm]f(x)=\summe_{n=0}^{\infty}\br{x^n}{(n+1)!}[/mm]
>  
> [mm]f'(x)=\summe_{n=1}^{\infty}\br{nx^{n-1}}{(n+1)!}[/mm]
>  
> Warum hat sich der Laufindex erhöht?

Wir leiten mal ganz normal ab:

[mm] \left(\summe_{n=0}^{\infty}\br{x^n}{(n+1)!}\right)'=\summe_{n=0}^{\infty}n\br{x^{n-1}}{(n+1)!} [/mm]

Wie lautet nun der erste Summand in der Reihe?

[mm] 0*\frac{x^{-1}}{1!}=0 [/mm]

Daher kann man die Reihe ab n=1 beginnen lassen.

Bezug
                
Bezug
Potenzreihen: Geschlossene Dartstellung
Status: (Frage) beantwortet Status 
Datum: 14:10 Do 30.01.2014
Autor: gotoxy86

$ [mm] f'(x)=\summe_{n=1}^{\infty}\br{nx^{n-1}}{(n+1)!}=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^n=\br{xe^x-e^x+1}{x^2} [/mm] $

Wie komme ich auf die letzte Darstellung ich habe schon versucht irgendwas mit der Cauchy-Produktformel und mit [mm] \br{a_0}{1-q} [/mm] hinzukriegen, aber ich schlug fehl, wie mache ich es richtig?

Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Do 30.01.2014
Autor: fred97

Es war doch

$ [mm] f(x)=\summe_{n=0}^{\infty}\br{x^n}{(n+1)!} [/mm] $

Dann ist

[mm] $xf(x)=\summe_{n=0}^{\infty}\br{x^{n+1}}{(n+1)!}=e^x-1$, [/mm]

also

  [mm] $f(x)=\bruch{e^x-1}{x}$ [/mm]

Nun differenziere mit der Quotientenregel

FRED

Bezug
                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Do 30.01.2014
Autor: gotoxy86

Geht das nur so, denn ich glaube, ich soll es andersrum darauf kommen.

Bezug
                                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 30.01.2014
Autor: fred97


> Geht das nur so, denn ich glaube, ich soll es andersrum
> darauf kommen.

Das geht auch: aus

[mm] $f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^n$ [/mm]

folgt

[mm] $x^2f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^{n+2}$ [/mm]

Wenn Du differenzierst bekommst Du

[mm] $(x^2f'(x))'=x*e^x.$ [/mm]

Zeige das !

Dann überlege Dir, dass folgt:

[mm] $x^2f'(x)=xe^x-e^x+1$ [/mm]

FRED


Bezug
                                                
Bezug
Potenzreihen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:00 Do 30.01.2014
Autor: gotoxy86

Ich kriege das nicht hin.

Bezug
                                                        
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Do 30.01.2014
Autor: schachuzipus

Hallo,


> Ich kriege das nicht hin.

Was genau kriegst du nicht hin?

Wie sollen wir dir konkret helfen, wenn du so allgemein daherquatscht.

Konkretisiere dein Problem, sonst wird das hier nix.

Alles im Detail vorrechnen werden wir nicht ...

Gruß

schachuzipus

Bezug
                                                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 30.01.2014
Autor: gotoxy86


> > Geht das nur so, denn ich glaube, ich soll es andersrum
> > darauf kommen.
>
> Das geht auch: aus
>  
> [mm]f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^n[/mm]
>  
> folgt
>  
> [mm]x^2f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^{n+2}[/mm]
>  
> Wenn Du differenzierst bekommst Du
>  
> [mm](x^2f'(x))'=x*e^x.[/mm]
>  
> Zeige das !

Bis hierhin ist klar.

[mm] \left(\br{(n+1)x^{n+2}}{(n+2)!}\right)'=\br{(n+1)(n+2)x^{n+1}}{(n+2)!}=\br{x^{n+1}}{n!} [/mm]

[mm] \Rightarrow x\summe_{n=0}^{\infty}\br{1}{n!}x^n=xe^x [/mm]

Aber ich weiß nicht wie mir das weiterhelfen kann.

>  
> Dann überlege Dir, dass folgt:
>  
> [mm]x^2f'(x)=xe^x-e^x+1[/mm]

Darauf komme ich nicht.

>  
> FRED
>  


Bezug
                                                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Do 30.01.2014
Autor: fred97


> > > Geht das nur so, denn ich glaube, ich soll es andersrum
> > > darauf kommen.
> >
> > Das geht auch: aus
>  >  
> > [mm]f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^n[/mm]
>  >  
> > folgt
>  >  
> > [mm]x^2f'(x)=\summe_{n=0}^{\infty}\br{n+1}{(n+2)!}x^{n+2}[/mm]
>  >  
> > Wenn Du differenzierst bekommst Du
>  >  
> > [mm](x^2f'(x))'=x*e^x.[/mm]
>  >  
> > Zeige das !
>  
> Bis hierhin ist klar.
>  
> [mm]\left(\br{n+1}{(n+2)!}\right)'=\br{(n+1)(n+2)x^{n+1}}{(n+2)!}=\br{x^{n+1}}{n!}[/mm]

In der Klammer links fehlt noch was !

>  
> [mm]\Rightarrow x\summe_{n=0}^{\infty}\br{1}{n!}x^n=xe^x[/mm]
>  
> Aber ich weiß nicht wie mir das weiterhelfen kann.
>  
> >  

> > Dann überlege Dir, dass folgt:
>  >  
> > [mm]x^2f'(x)=xe^x-e^x+1[/mm]
>  
> Darauf komme ich nicht.

Aus


$ [mm] (x^2f'(x))'=x\cdot{}e^x [/mm] $

folgt: [mm] x^2f'(x)=\integral_{}^{}{xe^x dx} [/mm]

Mit partiller Integration bekommst Du [mm] \integral_{}^{}{xe^x dx}=xe^x-e^x+c [/mm]

Mach das mal.

Dann haben wir:

[mm] x^2f'(x)=xe^x-e^x+c [/mm]


Damit Auch Du noch was zu tun hast: zeige: c=1.

FRED

>  >  
> > FRED
>  >  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]