matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPotenzreihe integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Potenzreihe integrieren
Potenzreihe integrieren < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mo 28.11.2011
Autor: racy90

Hallo,

Ich bin mir bei einer Aufgabe wiedermal unsicher und wollte euch befragen.

Ich hab [mm] f(x)=xe^x [/mm] und soll nun diese unter Verwendung bekannter Potenzreihen als Potenzreihe darstellen und diese dann integrieren.

Zum Schluss wäre noch zu machen das man zeigt das die integrierte Potenzreihe dasselbe etgibt wie die "normale "Stammfunktion.

Also die Potenzreihe von [mm] xe^x [/mm] hätte ich gesagt ist [mm] \summe_{n=1}^{\infty}\bruch{x^{n+1}}{n!} [/mm]

Diese Potenzreihe dann abgeleitet müsste doch ergeben [mm] \summe_{n=1}^{\infty}\bruch{x^{n+2}}{n!(n+2)} [/mm] und genau hier bin ich dann misstrauisch geworden denn wenn ich diese Reihe in Wolfram Alpha eingebe bekomme ich [mm] e^x(x-1)+1 [/mm]  doch die Stammfunktion von [mm] xe^x [/mm] ist [mm] e^x(x-1) [/mm]


        
Bezug
Potenzreihe integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mo 28.11.2011
Autor: notinX

Hallo,

> Hallo,
>  
> Ich bin mir bei einer Aufgabe wiedermal unsicher und wollte
> euch befragen.
>  
> Ich hab [mm]f(x)=xe^x[/mm] und soll nun diese unter Verwendung
> bekannter Potenzreihen als Potenzreihe darstellen und diese
> dann integrieren.
>  
> Zum Schluss wäre noch zu machen das man zeigt das die
> integrierte Potenzreihe dasselbe etgibt wie die "normale
> "Stammfunktion.
>  
> Also die Potenzreihe von [mm]xe^x[/mm] hätte ich gesagt ist
> [mm]\summe_{n=1}^{\infty}\bruch{x^{n+1}}{n!}[/mm]

das sieht doch gut aus.

>  
> Diese Potenzreihe dann abgeleitet müsste doch ergeben

Du meinst wohl integrieren ;-)

> [mm]\summe_{n=1}^{\infty}\bruch{x^{n+2}}{n!(n+2)}[/mm] und genau
> hier bin ich dann misstrauisch geworden denn wenn ich diese
> Reihe in Wolfram Alpha eingebe bekomme ich [mm]e^x(x-1)+1[/mm]  doch
> die Stammfunktion von [mm]xe^x[/mm] ist [mm]e^x(x-1)[/mm]
>  

Es gibt nicht 'die' Stammfunktion, zu jeder Funktion existieren unendlich viele Stammfunktionen. Die die Du angegeben hast sind beide Stammfunktionen, denn beim Ableiten verschwindet die additive Konstante, es ist also für jedes reelle c [mm] $F(x)=e^x(x-1)+c$ [/mm] eine Stammfunktion zu $f(x)$

Gruß,

notinX

Bezug
                
Bezug
Potenzreihe integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Mo 28.11.2011
Autor: racy90

Also sollte [mm] \summe_{n=1}^{\infty}\bruch{x^{n+2}}{n!(n+2)} [/mm] stimmen ?

Und wie  zeig ich das dann das  die Potenzreihe und [mm] e^x(x-1) [/mm] dasselbe sind?

Auf meinen Zettel steht nur  noch das ich es durch geeignete Umformungen  eventuell durch Verwendung bekannter Potenzreihen zeigen soll

Bezug
                        
Bezug
Potenzreihe integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 04:18 Di 29.11.2011
Autor: MathePower

Hallo racy90,

> Also sollte [mm]\summe_{n=1}^{\infty}\bruch{x^{n+2}}{n!(n+2)}[/mm]
> stimmen ?
>  


Ja, das stimmt auch.


> Und wie  zeig ich das dann das  die Potenzreihe und
> [mm]e^x(x-1)[/mm] dasselbe sind?

>

Dazu schreibst Du den Faktor vor der Potenz etwas anders:

[mm]\bruch{1}{n!*\left(n+2\right)}=\bruch{n+1}{n!*\left(n+1\right)*\left(n+2\right)}=\bruch{n+1}{\left(n+2\right)!}[/mm]

Dann muss gegebenenfalls noch eine Umindexierung durchgeführt werden


> Auf meinen Zettel steht nur  noch das ich es durch
> geeignete Umformungen  eventuell durch Verwendung bekannter
> Potenzreihen zeigen soll


Gruss
MathePower

Bezug
                                
Bezug
Potenzreihe integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:59 Di 29.11.2011
Autor: racy90

und dann kann ich so einfach schreiben [mm] \summe_{n=0}^{\infty}\bruch{n+1}{\left(n+2\right)!}*x^{n+2} =e^x(x-1) [/mm] ??

Bezug
                                        
Bezug
Potenzreihe integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Di 29.11.2011
Autor: Peter_Pein

Hallöle,

nun ja, Papier ist geduldig ;-)

Nein, denn diese Gleichung ist falsch.

Eventuell klappt es ja, wenn Du die Ausgangsreihe berichtigst.

Gruß,
Peter



Bezug
        
Bezug
Potenzreihe integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Di 29.11.2011
Autor: fred97


> Hallo,
>  
> Ich bin mir bei einer Aufgabe wiedermal unsicher und wollte
> euch befragen.
>  
> Ich hab [mm]f(x)=xe^x[/mm] und soll nun diese unter Verwendung
> bekannter Potenzreihen als Potenzreihe darstellen und diese
> dann integrieren.
>  
> Zum Schluss wäre noch zu machen das man zeigt das die
> integrierte Potenzreihe dasselbe etgibt wie die "normale
> "Stammfunktion.
>  
> Also die Potenzreihe von [mm]xe^x[/mm] hätte ich gesagt ist
> [mm]\summe_{n=1}^{\infty}\bruch{x^{n+1}}{n!}[/mm]

Das stimmt nicht. Die Summation beginnt bei 0:

[mm]x*e^x=\summe_{n=0}^{\infty}\bruch{x^{n+1}}{n!}[/mm]



>  
> Diese Potenzreihe dann abgeleitet

integriert


> müsste doch ergeben
> [mm]\summe_{n=1}^{\infty}\bruch{x^{n+2}}{n!(n+2)}[/mm]


Nein, wie oben:

[mm]\summe_{n=0}^{\infty}\bruch{x^{n+2}}{n!(n+2)}[/mm]

FRED

> und genau
> hier bin ich dann misstrauisch geworden denn wenn ich diese
> Reihe in Wolfram Alpha eingebe bekomme ich [mm]e^x(x-1)+1[/mm]  doch
> die Stammfunktion von [mm]xe^x[/mm] ist [mm]e^x(x-1)[/mm]
>  


Bezug
        
Bezug
Potenzreihe integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Di 29.11.2011
Autor: Peter_Pein

Hallo,

es könnte sich lohnen, auch Deinen Versuch der Potenzreihenentwicklung von [mm]x*e^x[/mm] zu überprüfen [lupe] (besonders die untere Summationsgrenze).

Gruß,
Peter

P.S.: oops, habe Freds Beitrag zu spät gesehen; sorry.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]