matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Potenzreihe
Potenzreihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Ist das korrekt?
Status: (Frage) beantwortet Status 
Datum: 09:35 Mi 28.09.2005
Autor: mx2002

Für welche [mm] x \in \IR [/mm] konvergiert die Potenzreihe

[mm] \summe_{n=1}^{\infty} ( 1 + \bruch{1}{2} + ... + \bruch{1}{n}) x^{n} [/mm]

Meine Antwort wäre, für |x| < 1 ist das korrekt?

Begründung: Eine Reihe konvergiert nur, wenn die zugehörige Folge gegen Null geht.

Gruß,
mx2002

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mi 28.09.2005
Autor: SEcki


> Meine Antwort wäre, für |x| < 1 ist das korrekt?

Scheint mir richtig zu sein.

> Begründung: Eine Reihe konvergiert nur, wenn die zugehörige
> Folge gegen Null geht.

Das ist zwar richtig - aber das ist nur notwendig, nicht hinreichend. Du musst das besser begründen, zB mit dem Quotientenkriterium

SEcki

Bezug
                
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Mi 28.09.2005
Autor: Bastiane

Hallo!

> > Meine Antwort wäre, für |x| < 1 ist das korrekt?
>  
> Scheint mir richtig zu sein.
>  
> > Begründung: Eine Reihe konvergiert nur, wenn die zugehörige
> > Folge gegen Null geht.
>  
> Das ist zwar richtig - aber das ist nur notwendig, nicht
> hinreichend. Du musst das besser begründen, zB mit dem
> Quotientenkriterium

Das heißt, für [mm] |x|\ge [/mm] 1 konvergiert die Reihe auf keinen Fall. Aber ob sie für |x|<1 wirklich konvergiert, ist noch nicht sicher. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:15 Mi 28.09.2005
Autor: SEcki


> Das heißt, für [mm]|x|\ge[/mm] 1 konvergiert die Reihe auf keinen
> Fall. Aber ob sie für |x|<1 wirklich konvergiert, ist noch
> nicht sicher. :-)

Noch nicht beweisen -, aber ich hoffe, das es sicher ist (wenn ich mich nicht verrechnet habe) das kann man ja mit den Rechenregeln für Potenzreihen zeigen (und sollte der OP auch tun, da lernt man dann am meisten). Für [m]x\in \{-1,1\}[/m] muss man das getrennt jeweils beweisen, dass es nicht konvergiert.

SEcki

Bezug
                                
Bezug
Potenzreihe: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 28.09.2005
Autor: mx2002

Hallo,

tut mir leid, aber ich muss noch mal kurz etwas Nachfragen.

Es geht immer noch um:

[mm] \summe_{n=1}^{\infty}(1+\bruch{1}{2}+...+\bruch{1}{n})x^{n} [/mm]

Ich habe jetzt mal zuerst den Konvergenzradius bestimmt:

[mm] \limes_{n\rightarrow\infty} | \bruch{1 + \bruch{1}{2}+...+\bruch{1}{n}}{1 + \bruch{1}{2}+...+\bruch{1}{n}+\bruch{1}{n+1}}| = 1 [/mm]

Und jetzt gilt doch:

[mm] |x-x_{0}| < r = 1 [/mm]
D.h. für x < 1 ist die Folge konvergent. Und für x = 1 gilt dies jedoch nicht, da die Folge aus der die Reihe entstanden ist dann keine Nullfolge mehr ist:
[mm] \summe_{i=1}^{n}(1+\bruch{1}{2}+...+\bruch{1}{i}) [/mm]


Die Folge konvergiert zwar wie man durch das Quotientenkriterium sieht, aber nicht gegen 0:
[mm] |\bruch{1 + \bruch{1}{2}+...+\bruch{1}{n}+\bruch{1}{n+1}}{1 + \bruch{1}{2}+...+\bruch{1}{n}}| < C = const [/mm]
Kann man das so beweisen oder bin ich jetzt falsch?

Danke,
mx2002

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Mi 28.09.2005
Autor: Julius

Hallo!


> Es geht immer noch um:
>  
> [mm] \summe_{n=1}^{\infty}(1+\bruch{1}{2}+...+\bruch{1}{n})x^{n} [/mm]
>  
> Ich habe jetzt mal zuerst den Konvergenzradius bestimmt:
>  
> [mm] \limes_{n\rightarrow\infty} | \bruch{1 + \bruch{1}{2}+...+\bruch{1}{n}}{1 + \bruch{1}{2}+...+\bruch{1}{n}+\bruch{1}{n+1}}| = 1 [/mm]

[ok] Der Konvergenzradius ist also $1$, d.h. die Reihe konvergiert für alle $x [mm] \in \IR$ [/mm] mit $|x|<1$.

> Und für x = 1 gilt dies jedoch nicht, da die
> Folge aus der die Reihe entstanden ist dann keine Nullfolge
> mehr ist:
>  [mm] \summe_{i=1}^{n}(1+\bruch{1}{2}+...+\bruch{1}{i}) [/mm]

Das ist richtig. Für $x=1$ (und übrigens auch für $x=-1$) konvergiert die Reihe nicht.

Viele Grüße
Julius

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Mi 28.09.2005
Autor: SEcki


> Die Folge konvergiert zwar wie man durch das
> Quotientenkriterium sieht, aber nicht gegen 0:

Das ist falsch - diese folge divergeirt. Das Quotientenkriterium kannst du so nicht anwenden! Aber noch eine Bitte: zeige doch, das für -1 die Reihe auch nicht konvergeirt!

SEcki

Bezug
                                                
Bezug
Potenzreihe: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mi 28.09.2005
Autor: mx2002

Vielen Dank an alle die mir mit diesem Problem geholfen haben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]