matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Do 12.07.2012
Autor: Trikolon

Aufgabe
Hallo meine erste (und vermutlich nicht letzte) Frage:

Ich soll zeigen, dass auf dem gesamten Konvergenzbereich von [mm] \summe_{n=1}^{\infty} 3n(3x-2)^{n-1} [/mm] gilt [mm] \summe_{n=1}^{\infty} 3n(3x-2)^{n-1} [/mm] = [mm] \summe_{n=0}^{\infty} \bruch{n+1}{3} x^n [/mm]

Der Konvergenzbereich ist ja [mm] (\bruch{1}{3} [/mm] , 1), aber wie gehe ich jetzt vor, um die Gleichheit zu beweisen?
Danke im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 12.07.2012
Autor: hippias

Ist Dir aufgefallen, dass Deine Reihe Ableitung einer Reiche ganz einfachen Typs ist? Wenn man diese etwas manipuliert kommt man vielleicht auf das Ergebnis. Sonst koennte man die Klammer ausmultiplizieren, neuordnen und das Beste hoffen...

Bezug
        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Do 12.07.2012
Autor: schachuzipus

Hallo,

als Ergänzung zu hippias' Mitteilung und etwas ausführlicher:


> Hallo meine erste (und vermutlich nicht letzte) Frage:
>  
> Ich soll zeigen, dass auf dem gesamten Konvergenzbereich
> von [mm]\summe_{n=1}^{\infty} 3n(3x-2)^{n-1}[/mm] gilt
> [mm]\summe_{n=1}^{\infty} 3n(3x-2)^{n-1}[/mm] =
> [mm]\summe_{n=0}^{\infty} \bruch{n+1}{3} x^n[/mm]
>  Der
> Konvergenzbereich ist ja [mm](\bruch{1}{3}[/mm] , 1), [ok] aber wie gehe
> ich jetzt vor, um die Gleichheit zu beweisen?

Setze [mm]f(x):=\sum\limits_{n=0}^{\infty}(3x-2)^n[/mm]

Dann ist im Konvergenzintervall [mm]f(x)=\frac{1}{1-(3x-2)}=\frac{1}{3}\cdot{}\frac{1}{1-x}[/mm] (geometr. Reihe)

Letzteres kannst du in [mm](-1,1)[/mm], also insbesondere in "deinem" Konvergenzintervall schreiben als [mm]\frac{1}{3}\sum\limits_{n=0}^{\infty}x^n[/mm]

Nun leite beide Seiten ab ...

>  Danke im Voraus!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

Gruß

schachuzipus


Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Do 12.07.2012
Autor: Trikolon

Könntest du bitte kurz erklären, weshalb man f(x) so definieren darf: $ [mm] f(x):=\sum\limits_{n=0}^{\infty}(3x-2)^n [/mm] $

und wie man dann hierauf kommt, ist mir ebenfalls nicht ganz klar...

[mm] f(x)=\frac{1}{1-(3x-2)} [/mm]



Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Do 12.07.2012
Autor: schachuzipus

Hallo nochmal,


> Könntest du bitte kurz erklären, weshalb man f(x) so
> definieren darf: [mm]f(x):=\sum\limits_{n=0}^{\infty}(3x-2)^n[/mm]

Warum nicht? Im Intervall [mm](1/3,1)[/mm] stellt [mm]\sum\limits_{n=0}^{\infty}(3x-2)^n[/mm] eine Funktion dar, die kann ich doch [mm]f[/mm] nennen.

Wenn man sich die gegebene Reihe ansieht, so ist das genau die Ableitung der obigen Reihe [mm]\sum\limits_{n=0}^{\infty}(3x-2)^n[/mm]

Darum das Spiel ...

>  
> und wie man dann hierauf kommt, ist mir ebenfalls nicht
> ganz klar...
>  
> [mm]f(x)=\frac{1}{1-(3x-2)}[/mm]

Na, wie lautet die Formel für die geometrische Reihe?

[mm]\sum\limits_{n=0}^{\infty}q^n=\frac{1}{1-q}[/mm] für [mm]|q|<1[/mm]

Hier mit [mm]q=3x-2[/mm], was genau im Konvergenzintervall betraglich [mm]<1[/mm] ist ...

Gruß

schachuzipus


Bezug
                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 12.07.2012
Autor: Trikolon

Ok, danke, das habe ich jetzt verstanden!

f abgeleitet wäre ja dann [mm] \bruch{1}{3*(1-x)^2} [/mm]


Ich sehe die Gleichheit aber immernoch nicht so ganz...

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Do 12.07.2012
Autor: schachuzipus

Hossa!


> Ok, danke, das habe ich jetzt verstanden!
>  
> f abgeleitet wäre ja dann [mm]\bruch{1}{3*(1-x)^2}[/mm]
>  
> Ich sehe die Gleichheit aber immernoch nicht so ganz...

Du sollst ja auch die beiden Reihen ableiten ...

Also beide Seiten der Gleichung [mm]\sum\limits_{n=0}^{\infty}(3x-2)^n \ = \ \frac{1}{3}\cdot{}\sum\limits_{n=0}^{\infty}x^n[/mm]

Gruß

schachuzipus


Bezug
                                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 12.07.2012
Autor: Trikolon

Also so?

[mm] \summe_{n=1}^{\infty} 3n(3x-2)^{n-1} [/mm] = 1/3 [mm] \summe_{n=1}^{\infty} nx^{n-1} [/mm]

Bezug
                                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Do 12.07.2012
Autor: schachuzipus

Hallo nochmal,


> Also so?
>  
> [mm]\summe_{n=1}^{\infty} 3n(3x-2)^{n-1}[/mm] = 1/3  [mm]\summe_{n=1}^{\infty} nx^{n-1}[/mm]  

[applaus]

Jo, das ist es doch fast, die letzte klitzekleine Umformung auf der rechten Seite kriegst du doch sicher hin ...

Immer das Ziel im Auge behalten!

Gruß

schachuzipus


Bezug
                                                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Do 12.07.2012
Autor: Trikolon

Und 1/3 $ [mm] \summe_{n=1}^{\infty} nx^{n-1} [/mm] $ ist dann gleich 1/3 [mm] \summe_{n=0}^{\infty} (n+1)x^n [/mm]

Bezug
                                                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Do 12.07.2012
Autor: Valerie20


> Und 1/3 [mm]\summe_{n=1}^{\infty} nx^{n-1}[/mm] ist dann gleich 1/3
> [mm]\summe_{n=0}^{\infty} (n+1)x^n[/mm]  

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]