matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Potenzreihe
Potenzreihe < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Fr 27.01.2012
Autor: hula

Hallöchen

Ich habe eine Frage bezgl. eines PDF's das ich lese. Wenn es jemand interessiert, es geht um foglendes []PDF

Kurz es geht um folgendes (Seite 3. im PDF): Wenn ich eine Zufallsvariabel $Y$ habe, die Werte in $ [mm] \IN [/mm] $ annimmt, also $ [mm] Y(\omega)\in \{0,1,2,\dots\}$ [/mm] dann kann ich die erzeugende Funktion definieren:

[mm] $$G_Y [/mm] :[0,1] [mm] \to \IR$$ [/mm] mit

$$ [mm] G_Y(t) [/mm] = [mm] \sum_{i\ge 0} P[Y=i]t^i$$ [/mm]

Das kann ich ja als Potenzreihe betrachten, also würde mich der Konvergenzradius $R$ interessieren. Dann wird gesagt, dass diese Reihe sicherlich einen Konvergenzradius [mm]R\ge 1[/mm] hat. Wieso gilt dies? Wie kommt man auf dieses Resultat. Wenn ich nicht explizit weiss, wie $Y$ verteilt ist.
Dankeschööön

greetz

hula

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Fr 27.01.2012
Autor: Gonozal_IX

Hiho,

offensichtlich gilt $P[Y=i] [mm] \le [/mm] 1$, da P ein W-Maß ist. Damit folgt: $ [mm] G_Y(t) [/mm] = [mm] \sum_{i\ge 0} P[Y=i]t^i \le \sum_{i\ge 0} t^i$ [/mm] und die Reihe hat den Konvergenzradius 1.

Für $t=1$ gilt:

$ [mm] G_Y(1) [/mm] = [mm] \sum_{i\ge 0} [/mm] P[Y=i] = 1$, da P ein W-Maß auf [mm] \IN [/mm] ist, also konvergiert die Reihe.

MFG,
Gono.




Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 27.01.2012
Autor: hula

hallo gonozal_IX

Danke für deine Antwort. Eine kleine Anschlussfrage. Nach deiner Antwort weiss ich doch zwei Dinge:

1. meine Reihe hat einen Konvergenzradius $ [mm] \le [/mm] 1$, da du sie ja durch $ [mm] \sum t^i [/mm] $ abgeschätzt hast.
2. Für $ t= 1$ konvergiert die Reihe. Also hat sie doch einen Konvergenzradius von $ R=1$?
Wieso steht im PDF einen Konvergenzradius $ [mm] R\ge [/mm] 1$ ?

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Fr 27.01.2012
Autor: Gonozal_IX

Hiho,

> 1. meine Reihe hat einen Konvergenzradius [mm]\le 1[/mm], da du sie
> ja durch [mm]\sum t^i[/mm] abgeschätzt hast.
> 2. Für [mm]t= 1[/mm] konvergiert die Reihe. Also hat sie doch einen
> Konvergenzradius von [mm]R=1[/mm]?

jein. Wir haben damit gezeigt, dass sie MINDESTENS einen Konvergenzradius von 1 hat. Wir haben sie ja nach oben abgeschätzt und die grössere Reihe hat einen Konvergenzradius von 1.

Je nachdem, wie Y verteilt ist, kann der Konvergenzradius natürlich auch grösser sein, bspw für

$P[Y = i] = [mm] 2^{-i}, i\ge [/mm] 1$

lässt sich der Konvergenzradius genau bestimmen und ist eben 2.

MFG,
Gono.

Bezug
                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Fr 27.01.2012
Autor: hula

Danke für deine Hilfe!

Aber was ich nicht verstehe, wieso gilt: Wenn ich die Summe nach oben abschätze, dann hat sie einen grösseren Konvergenzradius als die Summe, mit der wir abgeschätzt haben? als:

$$ [mm] \sum [/mm] X [mm] \le \sum [/mm] Y$$

wobei das zwei Potenzreihen wären die ich $X$ und $Y$ nenne. Wenn ich den Konvergenzradius [mm] $R_Y$ [/mm] der Potenzreihe $Y$ kenne, wieso gilt

[mm] $$R_X \ge R_Y$$ [/mm] ?

gruss

hula

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 27.01.2012
Autor: Gonozal_IX

Hiho,

logisch ist das allemal.
Beweisen kannst du es einfach per Widerspruch:

Nimm an es gelte [mm] $R_X [/mm] < [mm] R_Y$, [/mm] dann existiert ein t, so dass [mm] $R_X [/mm] < t < [mm] R_Y$ [/mm]

Dann würde gelten:

[mm] $\summe [/mm] X(t) = [mm] \infty$, [/mm] aber $ [mm] \summe [/mm] Y(t) < [mm] \infty$ [/mm] und damit insbesondere nicht mehr [mm] $\summe [/mm] X(t) [mm] \le \summe [/mm] Y(t)$

MFG,
Gono.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]