matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:32 So 02.11.2008
Autor: MissB.

Aufgabe
[mm] \summe_{n=1}^{\infty}\bruch{ln(n)}{\wurzel{n}}*x^n [/mm]
Bestimme alle reellen Werte x, für die die Reihe konvergiert!

Hallo zusammen,
ich habe hier mal eine Reihe, bei der ich nicht weiß, wie ich überhaupt anfangen soll... Der ln überfordert mich leicht. Quotientenkriterium bringt mich nicht wirklich weiter. Aber Wurzelkriterium machts auch nicht leichter.
Ich bin über jeden Tipp dankbar :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 So 02.11.2008
Autor: rainerS

Hallo!

> [mm]\summe_{n=1}^{\infty}\bruch{ln(n)}{\wurzel{n}}*x^n[/mm]
>  Bestimme alle reellen Werte x, für die die Reihe
> konvergiert!
>  Hallo zusammen,
>  ich habe hier mal eine Reihe, bei der ich nicht weiß, wie
> ich überhaupt anfangen soll... Der ln überfordert mich
> leicht. Quotientenkriterium bringt mich nicht wirklich
> weiter. Aber Wurzelkriterium machts auch nicht leichter.
>  Ich bin über jeden Tipp dankbar :)

Kennst du den Begriff des Konvergenzradius einer Potenzreihe und wie man ihn berechnet?

Viele Grüße
   Rainer

Bezug
                
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 So 02.11.2008
Autor: MissB.


> Hallo!

>  
> Kennst du den Begriff des Konvergenzradius einer
> Potenzreihe und wie man ihn berechnet?
>  
> Viele Grüße
>     Rainer

Ja, nur muss ich doch erst mal an den Punkt kommen, an dem ich dann n gegen unendlich laufen lassen kann, um dann zu bestimmen für welche Werte |x|<1 bzw. |x|>1 sind um Konvergenz bzw. Divergenz bestimmen zu können.

Bezug
        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 02.11.2008
Autor: Marcel

Hallo,

> [mm]\summe_{n=1}^{\infty}\bruch{ln(n)}{\wurzel{n}}*x^n[/mm]
>  Bestimme alle reellen Werte x, für die die Reihe
> konvergiert!
>  Hallo zusammen,
>  ich habe hier mal eine Reihe, bei der ich nicht weiß, wie
> ich überhaupt anfangen soll... Der ln überfordert mich
> leicht. Quotientenkriterium bringt mich nicht wirklich
> weiter. Aber Wurzelkriterium machts auch nicht leichter.
>  Ich bin über jeden Tipp dankbar :)

Rainer hat Dir ja schon einen Tipp gegeben. Wenn es unklar ist:

Du hast hier zunächst [mm] $$S:=\limsup_{n \to \infty} \sqrt[n]{\left|\bruch{\ln(n)}{\wurzel{n}}\right|}=\limsup_{n \to \infty} \sqrt[n]{\bruch{\ln(n)}{\wurzel{n}}}$$ [/mm]

zu berechnen.

(Der Konvergenzradius $R$ ist dann [mm] $R=\frac{1}{S}\,.$) [/mm]

Hilfreich sollte dabei sein, dass [mm] $\sqrt[n]{n} \to [/mm] 1$ (was bedeutet das für [mm] $\sqrt[n]{\sqrt{n}}$?). [/mm] Außerdem behaupte ich, dass [mm] $\sqrt[n]{\ln(n)} \to 1\,.$ [/mm]

Um letztgenanntes einzusehen: O.E. sei $n > 3 > [mm] e\,.$ [/mm] Dann ist [mm] $\ln(n) [/mm] > [mm] 1\,.$ [/mm] Daraus folgt für alle $n > [mm] 3\,:$ [/mm]

$$1 [mm] \le \sqrt[n]{\ln(n)} \le \sqrt[n]{n}\,.$$ [/mm]

Was weißt Du nun über den Konvergenzradius Deiner Reihe?

P.S.:
Die Fälle [mm] $x=\pm [/mm] 1$ musst Du natürlich noch separat betrachten.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]