matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPotenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Potenzreihe
Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 So 16.07.2017
Autor: Herzblatt

Aufgabe
Sei f: [mm] \IC \setminus [/mm] {2} [mm] \to \IC [/mm] definiert als [mm] f(z)=\frac{z^2}{z-2}. [/mm] Finde eine Potenzreihe, sodass f(z)= [mm] \sum_{k\ge 0} a_k*(z-1)^k [/mm]

Als Tipp gibt und der Prof, dass man die geometrische Reihe benutzen soll und das z= 1+ (z-1)

Habe bis jetzt:
[mm] f(z)=\frac{1+(z-1)}{1-\frac{2}{z}} [/mm]
= [mm] \sum_{k\ge 0}\left( \bruch{2}{z} \right)^k [/mm] + (z-1) [mm] *\sum_{k\ge 0} \left( \bruch{2}{z} \right)^k [/mm]
=z* [mm] \sum_{k\ge 0}\left( \bruch{2}{z} \right)^k [/mm]
= [mm] \sum_{k\ge 0} z*\left( \bruch{2}{z} \right)^k [/mm]

Stimmt das bis jetzt?
Bin mir unsicher, weil der Betrag von  q bei einer geometrischen Reihe ja kleiner als eins sein muss, damit man das so schreiben kann wie ich es gemacht habe. Das heisst z>2 damit das so geht wie ich es gemacht habe....
ausserdem komme ich nicht dadrauf wie man den Faktor (z-1) hinkriegt....
Waere super, wenn mir jemand auf die Sprünge helfen könnte :-)

Euer Herzblatt

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 So 16.07.2017
Autor: fred97

Es ist

[mm] $\frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}$. [/mm]

Kommst Du damit weiter ?

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:16 Mo 17.07.2017
Autor: Herzblatt


> Es ist
>
> [mm]\frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}[/mm].
>  
> Kommst Du damit weiter ?

Ah super, das erklärt schon mal wie ich auf [mm] (z-1)^k [/mm] komme. aber teile ich das jetzt auf? Ich haette dann

[mm][mm] \frac{z^2}{z-2}=\frac{(z-1+1)^2}{(z-1)-1}=-\frac{(z-1)^2+2(z-1)+1}{1-(z-1)}=-\frac{(z-1)^2}{1-(z-1)}+\frac{2(z-1)}{1-(z-1)}+\frac{1}{1-(z-1)}=-(z-1)^2 \sum_{k\ge0} (z-1)^k +2(z-1)\sum_{k\ge 0} (z-1)^k+\sum_{k\ge 0} (z-1)^k/mm] [/mm]
aber wie fasse ich das jetzt zusammen?ziehe ich 2*(z-1) bzw. [mm] -(z-1)^2 [/mm] in die Summe, so wird das [mm] a_k [/mm] nicht unabhängig von z sein....

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mo 17.07.2017
Autor: leduart

Hallo
1. ziehe die Potenzen in die Summen , dann schreibe wieder alles in eine Summe, indem du nach Potenzen von (z-1) ordnest! dann suche wie jetzt [mm] a_0 [/mm] bis [mm] a_4 [/mm] aussieht.
Gruß leduart

Bezug
                                
Bezug
Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 So 23.07.2017
Autor: Herzblatt


> Hallo
>   1. ziehe die Potenzen in die Summen , dann schreibe
> wieder alles in eine Summe, indem du nach Potenzen von
> (z-1) ordnest! dann suche wie jetzt [mm]a_0[/mm] bis [mm]a_4[/mm] aussieht.
>  Gruß leduart


Super, danke habs geschafft :-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]