matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe-Konv.-radius,Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Potenzreihe-Konv.-radius,Summe
Potenzreihe-Konv.-radius,Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe-Konv.-radius,Summe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:02 Di 09.06.2009
Autor: uniklu

Aufgabe
Bestimme Konvergenzradius und Summe der folgenden Potenzreihen:
a) x - [mm] \bruch{x^3}{3} [/mm] + [mm] \bruch{x^5}{5} [/mm] - [mm] \bruch{x^7}{7} \pm \ldots [/mm]

b) x + [mm] \bruch{x^2}{2} [/mm] + [mm] \bruch{x^3}{3} [/mm] + [mm] \bruch{x^4}{4} [/mm] + [mm] \ldots [/mm]

Hallo!

Meine Aufgabe ist es also die Konvergenzradien und die Summe der Potenzfolgen zu berechnen.

ad a)

Ich habe mir die Reihe also angesehen und bekomme folgende Darstellung heraus:

[mm] \summe_{n=0}^{\infty} a_n [/mm] * [mm] (x-x_0)^n [/mm]
bzw.
[mm] \summe_{n=0}^{\infty} a_n [/mm] * [mm] x^n [/mm]

nun sieht man leicht für den Koeffizienten [mm] a_n [/mm] dass [mm] a_n [/mm] = [mm] (-1)^n [/mm] * [mm] \bruch{1}{2n+1} [/mm] ist.

Jetzt sieht man sich die einzelnen Koeffizienten für n = 0,1,2,... an.
[mm] a_0 [/mm] = 0, [mm] a_1 [/mm] = 1, [mm] a_2 [/mm] = 0, [mm] a_3 [/mm] = -1/3, [mm] a_4 [/mm] = 0, [mm] a_5 [/mm] = 1/5, [mm] a_6 [/mm] = 0, [mm] a_7 [/mm] = -1/7 etc

Wenn man nun den Betrag ansieht und Cauchy Hadamard anwendet sieht man, dass
[mm] \wurzel[n]{| a_n |} [/mm] gegen 1 geht

damit bekommt man also 2 Häufungspunkte nämlich 0 und 1.

[mm] \bruch{1}{\limes_{n\rightarrow\infty} sup \wurzel[n]{| a_n |}} [/mm] = [mm] \bruch{1}{1} [/mm] = 1

wie berechnet man nun die Summe??
Habe nichts in meinem Skriptum gefunden.

Die 2te Aufgabe möchte ich später rechnen - ich möchte zuerst wissen, wie man die Summe berechnet. Nur eine kurze Frage: ist die Vorgangsweise bei der 2ten Aufgabe identisch?

lg
uniklu

        
Bezug
Potenzreihe-Konv.-radius,Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Di 09.06.2009
Autor: fred97

Differenziere

                 x - $ [mm] \bruch{x^3}{3} [/mm] $ + $ [mm] \bruch{x^5}{5} [/mm] $ - $ [mm] \bruch{x^7}{7} \pm \ldots [/mm] $

gliedweise. Dies führt auf eine geometrische Reihe, deren Summenformel Du sicher kennst.

Anschließend integrieren.

FRED

Bezug
                
Bezug
Potenzreihe-Konv.-radius,Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Mi 10.06.2009
Autor: uniklu

Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]