matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesPotenzrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Potenzrechnung
Potenzrechnung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 17.01.2016
Autor: rosenbeet001

Aufgabe
Vereinfache so weit wie möglich.

[mm] (\bruch{1}{x} [/mm] + [mm] x^{-2}) [/mm] * 2x

Hallo:) Ich denke, dass bei meinem Rechenweg etwas falsch gelaufen ist...

= [mm] (\bruch{1}{x} [/mm] + [mm] \bruch{1}{x^{2}}) [/mm] * 2x

= [mm] \bruch{x^{2}+x}{x^{3}} [/mm] * 2x

= [mm] \bruch{x^{2}+x}{2x^{4}} [/mm]

= [mm] \bruch{x^{2}}{2x^{4}} [/mm] + [mm] \bruch{x}{2x^{4}} [/mm]

= [mm] \bruch{1}{2x^{-2}} [/mm] + [mm] \bruch{1}{2x^{-3}} [/mm]

= [mm] 2x^{2} [/mm] + [mm] 2x^{3} [/mm]

        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 So 17.01.2016
Autor: Jule2

Hi
es ist
[mm] (\bruch{1}{x} [/mm] + [mm] \bruch{1}{x^2})*2x [/mm]

[mm] =(\bruch{x+1}{x^2})*2x [/mm]

[mm] =\bruch{2(x+1)}{x} [/mm]

[mm] =2+\bruch{2}{x} [/mm]

LG

Bezug
                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 17.01.2016
Autor: rosenbeet001

Aber es gilt doch:

[mm] \bruch{a}{b} [/mm] : [mm] \bruch{c}{d} [/mm] = [mm] \bruch{a*d}{b*c} [/mm]
Ich kann den Rechenweg daher leider nicht nachvollziehen...

Bezug
                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 So 17.01.2016
Autor: Jule2

Hi,
was hat den Bitteschön
[mm] \bruch{a}{b} [/mm] : [mm] \bruch{c}{d} [/mm]
mit deiner Aufgabenstellung zu tun???
LG

Bezug
                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 So 17.01.2016
Autor: rosenbeet001

Tut mir leid. Ich meine natürlich : [mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d} [/mm] = [mm] \bruch{a*d+c*b}{b*d} [/mm]

Bezug
                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 So 17.01.2016
Autor: Jule2

Ja diese Regel gibt es um auf einen gemeinsamen Hauptnenner zu kommen es ist aber nicht die einzige Möglichkeit! Wichtig ist ja nur einen zu finden!!
Also nochmal etwas ausführlicher:

[mm] (\bruch{1}{x}+\bruch{1}{x^2})2x [/mm]

[mm] =(\bruch{x}{x^2}+\bruch{1}{x^2})2x [/mm]    hier habe ich den ersten Bruch mit [mm] \bruch{x}{x} [/mm] multipliziert dies ist natürlich immer möglich da [mm] \bruch{x}{x}=1 [/mm] ist!!

[mm] =(\bruch{x+1}{x^2})2x [/mm]

[mm] =\bruch{2x(x+1)}{x^2} [/mm] nun kann man durch x kürzen

[mm] =\bruch{2(x+1)}{x} [/mm]

[mm] =\bruch{2x+2}{x} [/mm]

[mm] =\bruch{2x}{x}+\bruch{2}{x} [/mm]

=2+ [mm] \bruch{2}{x} [/mm]

LG

Bezug
                                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 So 17.01.2016
Autor: rosenbeet001

Ah, super. Jetzt habe ich es verstanden. Vielen Dank!

Eine Frage habe ich jedoch noch: Ist x/x der einzige Bruch, den man beliebig mit einem Bruch oder mehreren Brüchen multiplizieren kann, um den Term zu vereinfachen?

Bezug
                                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 17.01.2016
Autor: Jule2

Nein du kannst natürlich auch [mm] \bruch{x^2}{x^2} [/mm] nehmen oder [mm] \bruch{1-x}{1-x} [/mm] wichtig ist nur das du einen bruch der Form [mm] \bruch{a}{a} [/mm] nimmst wobei du für a alles einsetzen kannst was du möchtest den [mm] \bruch{a}{a} [/mm] ist ja bekanntlich immer 1 und etwas mit 1 zu multiplizieren verändert ja nichts!!

Bezug
                                                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 So 17.01.2016
Autor: rosenbeet001

Okay, alles klar! Und diesen Bruch der Form a/a muss ich demnach auch nicht mit jedem Wert oder Bruch der Gleichung multiplizieren, sondern so wie es nützlich ist, da a/a immer 1 ist?

Bezug
                                                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 So 17.01.2016
Autor: Jule2

Korrekt!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]