matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPotenzmengen Gleichverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Potenzmengen Gleichverteilung
Potenzmengen Gleichverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmengen Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 30.12.2014
Autor: Arniebo

Hallo,
ich komme leider bei einem Punkt zum Verständnis nicht weiter.
Angenommen, ich habe eine Potenzmenge und bilde daraus wieder eine Potenzmenge, sei diese A. Wenn nun auf A eine diskrete Gleichverteilung herrscht, dann gilt für die Elemente unter der Gleichverteilung ja [mm] P=\bruch{1}{n} [/mm] mit n Anzahl der Elemente der Menge A. Ändert sich dies, wenn ich nun zum Beispiel eine Menge {{1,2},{2,3}} als Element von A habe im Bezug auf die einzelne Menge {1,2}?
Vielen Dank im Voraus,
mit lieben Gruß,
Arniebo

        
Bezug
Potenzmengen Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:06 Mi 31.12.2014
Autor: DieAcht

Hallo Arniebo!


> Angenommen, ich habe eine Potenzmenge und bilde daraus wieder eine Potenzmenge, sei diese A.

Du wählst hier [mm] A:=\mathcal{P}(\mathcal{P}(X)) [/mm] ohne Angabe von [mm] $X\$. [/mm]

> Wenn nun auf A eine diskrete Gleichverteilung herrscht,

[mm] $A\$ [/mm] ist ein Mengensystem!

> dann gilt für die Elemente unter der Gleichverteilung ja [mm]P=\bruch{1}{n}[/mm] mit n Anzahl der Elemente der Menge A.

Das ist Quark.

Sei [mm] \Omega [/mm] eine nicht leere endliche Menge. Dann gilt im diskreten
Fall bei einer Gleichverteilung

      [mm] P(A)=\frac{|A|}{|\Omega|} [/mm] für alle [mm] A\subseteq\Omega. [/mm]

Eine diskrete Zufallsvariable [mm] $X\$ [/mm] besitzt eine diskrete Gleich-
verteilung, falls die Wahrscheinlichkeit für jede Ausprägung
[mm] x_1,\ldots,x_n [/mm] gleich ist. Dann gilt

      [mm] P(X=x_i)=\frac{1}{n} [/mm] für alle [mm] i\in\{1,\ldots,n\}. [/mm]    

> Ändert sich dies, wenn ich nun zum Beispiel eine Menge {{1,2},{2,3}}

[mm] \{\{1,2\},\{2,3\}\} [/mm] ist ein Mengensystem!

> als Element von A habe im Bezug auf die einzelne Menge {1,2}?

Das macht keinen Sinn.


Woher kommt die Frage denn genau?


Gruß
DieAcht

Bezug
                
Bezug
Potenzmengen Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Mi 31.12.2014
Autor: Arniebo

Hallo,
Dankeschön auf jeden Fall für die Antwort.
Die Frage kommt von einem Problem vor dem ich sitze. Ich habe eine dreielementige Menge Alpha Beta und gamma gegeben. Daraus bilde ich die zweielementige potenzmenge und aus dieser Menge wiederum die potenzmenge, die ich unten A genannt habe. Soweit ist es noch kein Problem. Dann sollen zwei Mengen bestimmt werden, einmal die, in der Alpha vorkommt und einmal die, in der Beta vorkommt. Dabei habe ich die Mengen so gelassen und hatte jedes mal 6 von 8 Mengen. Anschließend sollte davon die Wahrscheinlichkeit unter der Gleichverteilung bestimmt werden. Die 6/8 kommen mir jedoch merkwürdig vor, auch dass ich die Mengen nicht weiter auseinander nehmen kann. Daher meine Frage…
Mit lieben Gruß und Dankeschön,
Arniebo

Bezug
                        
Bezug
Potenzmengen Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 31.12.2014
Autor: DieAcht


> Ich habe eine dreielementige Menge Alpha Beta und gamma gegeben.

Sei also [mm] X:=\{\alpha,\beta,\gamma\}, [/mm] also [mm] $|X|=3\$. [/mm]

> Daraus bilde ich die zweielementige potenzmenge

Was meinst du damit? Meinst du die zweielementigen Teilmengen von
[mm] $X\$? [/mm] Wir haben dann [mm] X':=\{\{\alpha,\beta\},\{\alpha,\gamma\},\{\beta,\gamma\}\}, [/mm] also [mm] |X'|=3=\vektor{3 \\ 2}. [/mm]

> und aus dieser Menge wiederum die potenzmenge, die ich unten A genannt habe.

Also setzen wir [mm] A:=\mathcal{P}(X') [/mm] und somit ist [mm] |A|=2^{|X'|}=2^{3}=8. [/mm]

> Soweit ist es noch kein Problem.

Kannst du [mm] $A\$ [/mm] explizit angeben?

> Dann sollen zwei Mengen bestimmt werden, einmal die, in der Alpha vorkommt und einmal die, in der Beta vorkommt.

Was meinst du damit? Meinst du alle Teilmengen, die [mm] \alpha [/mm] enthalten
bzw. alle Teilmengen, die [mm] \beta [/mm] enthalten? Führe am Besten ab hier
alles explizit aus, dann können wir dir auch weiterhelfen.

Bezug
                                
Bezug
Potenzmengen Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Do 01.01.2015
Autor: Arniebo

Hallo,
genau, für A erhalte ich dann
[mm] \mathcal{A}=\mathcal{P}(\mathcal{P}_{2}(\alpha,\beta, \gamma)) [/mm]
= [mm] \mathcal{P}(\{\alpha,\beta\},\{\alpha,\gamma\},\{\beta,\gamma\}) [/mm]
[mm] =\{\emptyset, \{\{\alpha,\beta\},\{\alpha,\gamma\},\{\beta,\gamma\}\}, \{\{\alpha,\beta\},\{\alpha,\gamma\}\},\{\{\alpha,\beta\},\{\beta,\gamma\}\}, \{\{\alpha,\gamma\},\{\beta,\gamma\}\}, \{\{\alpha,\beta\}\},\{\{\alpha,\gamma\}\},\{\{\beta,\gamma\}\}\}. [/mm]
Dies sind insgesamt 8 Mengen in diesem Mengensystem. Wenn ich darauf nun die Gleichverteilung anwende, komme ich auf eine Wahrscheinlichkeit von [mm] \bruch{1}{8} [/mm] pro Menge.
Nun sollen alle Mengen zusammengefasst werden, die [mm] \alpha [/mm] enthalten:
A [mm] \in \mathcal{A}, A=\{\{\{\alpha,\beta\},\{\alpha,\gamma\},\{\beta,\gamma\}\}, \{\{\alpha,\beta\},\{\alpha,\gamma\}\},\{\{\alpha,\beta\},\{\beta,\gamma\}\}, \{\{\alpha,\gamma\},\{\beta,\gamma\}\}, \{\{\alpha,\beta\}\},\{\{\alpha,\gamma\}\}\}, [/mm] insgesamt 6 Mengen.
Es geht darum, dass [mm] \alpha, \beta, \gamma [/mm] drei Studenten sind, die an einer Verlosung teilnehmen. Nun soll die Wahrscheinlichkeit dafür bestimmt werden, dass [mm] \alpha [/mm] gewinnt. Dabei können immer zwei von den dreien einen Preis bekommen - daher die Menge A. Für die Wahrscheinlichkeit der Menge A habe ich [mm] P(A)=\bruch{6}{8} [/mm] herausbekommen. Was mich etwas stutzig macht, denn die Wahrscheinlichkeit für [mm] \beta [/mm] und [mm] \gamma [/mm] ist dieselbe. Was habe ich da übersehen?
Vielen lieben Dank,
mit freundlichem Gruß,
Arniebo

Bezug
                                        
Bezug
Potenzmengen Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Do 01.01.2015
Autor: leduart

Hallo
warum postest du nicht die wirkliche Aufgabe? wenn unter 3 Studis 2 Preise velost werden ist die Wahrscheinlichkeit einen zu bekommen doch einfach 2/3? oder kann einer auch 2 Preise bekommen?
Gruß leduart

Bezug
                                                
Bezug
Potenzmengen Gleichverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:04 Do 01.01.2015
Autor: Arniebo

Nein eben nicht, da es sich dabei um die Potenzmengen dreht.


Bezug
                                                        
Bezug
Potenzmengen Gleichverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Fr 02.01.2015
Autor: leduart

Hallo
kannst du nicht doch die exakte Aufgabe hier aufschreiben?
Gruß leduart

Bezug
                                                        
Bezug
Potenzmengen Gleichverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 08.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Potenzmengen Gleichverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Fr 02.01.2015
Autor: tobit09

Hallo zusammen!


[]Hier hat der Fragesteller die gleiche Frage gestellt.


Viele Grüße
Tobias

Bezug
                
Bezug
Potenzmengen Gleichverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Fr 02.01.2015
Autor: DieAcht

Hallo Tobias und vielen Dank für den Link!


Jetzt wird mir auch einiges klar. ;-)

@ Arniebo: Diskrete Gleichverteilung auf [mm] \Omega [/mm] (bei mir $X'$) und nicht auf [mm] $A\$. [/mm]


Gruß
DieAcht

Bezug
                        
Bezug
Potenzmengen Gleichverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:57 Fr 02.01.2015
Autor: Arniebo

Die Zeile habe ich wohl völlig überlesen.
Kann es sein, dass also A [mm] \in \mathcal{A} [/mm] tatsächlich nicht die große lange Menge aus 6 Mengen ist, sondern nur aus den zwei Elementen [mm] \{\alpha,\beta\}, \{\alpha,\gamma\} [/mm] besteht?? Und dass dann tatsächlich die Wahrscheinlichkeit 2/3 ist? Es tut mir leid, aber das kommt mir zu einfach vor. Dann wäre es für [mm] \beta [/mm] ja das gleiche.

Bezug
                                
Bezug
Potenzmengen Gleichverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:06 Sa 03.01.2015
Autor: DieAcht

Willst du wissen ob StrgAltEntf die Wahrheit sagt? Meine ehrliche
Meinung: Diese Aufgabe ist wirklich nicht so schwierig. Du sollst
dich einfach nur in Ruhe mit den Begriffen auseinandersetzen. Am
Besten du schreibst alles erneut sauber auf, vielleicht erkennst
du dann deinen Denkfehler. Ohne Hilfe von Tobias hätten wir hier
weiterhin nicht die richtige Aufgabenstellung gelesen!

Bezug
                                
Bezug
Potenzmengen Gleichverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Di 06.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Potenzmengen Gleichverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:35 Sa 03.01.2015
Autor: Arniebo

Dankeschön :).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]