matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriePotenzmenge, Sigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Potenzmenge, Sigma-Algebra
Potenzmenge, Sigma-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmenge, Sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 08.03.2006
Autor: elena27

Aufgabe
Sei  X nicht leere Menge und [mm] \IR [/mm] versehen mit der Borel-Algebra.
Gibt es eine Sigma-Algebra, so dass alle Abbildungen f: X --> [mm] \IR [/mm] messbar sind?

Die Antwort auf diese Frage lautet: Ja , diese Sigma -Algebra ist die Potenzmenge von X.
Leider verstehe ich nicht warum. Weil Potenzmenge die größte Sigma -Algebra, die  X enthält?
Könnte mir jemand bitte einen Tipp geben?
Ich wäre sehr dankbar für jede Hilfe.

LG
Elena
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzmenge, Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 08.03.2006
Autor: andreas

hi

ich nehme jetzt einfach mal an, dass eure definition von messbarkeit ist:

$f: X [mm] \longrightarrow \mathbb{R}$ [/mm] messbar $: [mm] \Longleftrightarrow$ $f^{-1}(A)$ [/mm] messbar für jedes messbare $A [mm] \subset \mathbb{R}$, [/mm]

also urbilder messbarer mengen sind messbar. dann ist die aufgabe aber trivial, denn für jedes $A [mm] \subset \mathbb{R}$ [/mm] gilt offensichtlich [mm] $f^{-1}(A) \in \mathcal{P}(X)$, [/mm] wenn [mm] $\mathcal{P}(X)$ [/mm] die potenzmenge von $X$ bezeichnet. also ist jede funktion $f: X [mm] \longrightarrow \mathbb{R}$ [/mm] messbar.

wenn ihr eine andere definition von messbrakeit hatte, so poste diese bitte mal.


grüße
andreas

Bezug
                
Bezug
Potenzmenge, Sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Mi 08.03.2006
Autor: elena27

Hallo Andreas,

vielen vielen Dank für Deine schnelle Antwort.
Die Definition stimmt schon. Wahrscheinlich bin ich blöd, aber  ich verstehe genau das nicht:  [mm] f^{-1}(A) \in \mathcal{P}(X) [/mm]
Warum?

LG Elena

Bezug
                        
Bezug
Potenzmenge, Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 08.03.2006
Autor: andreas

hi

> vielen vielen Dank für Deine schnelle Antwort.
>  Die Definition stimmt schon. Wahrscheinlich bin ich blöd,
> aber  ich verstehe genau das nicht:  [mm]f^{-1}(A) \in \mathcal{P}(X)[/mm]
>  
> Warum?

[mm] $\mathcal{P}(X) [/mm] := [mm] \{B: B \subset X\}$ [/mm] ist ja einfach die menge aller teilmengen von $X$. andererseits ist ja das urbild definiert als [mm] $f^{-1}(A) [/mm] = [mm] \{x \in X: f(x) \in A \} \subset [/mm] X$ und das ist ja per definition eine teilmenge von $X$ und da [mm] $\mathcal{P}(X)$ [/mm] alle teilmengen von $X$ enthält muss also auch [mm] $f^{-1}(A) \in \mathcal{P}(X)$ [/mm] sein.
wenn du so willst ist deine intuition aus deiner ersten frage richtig: [mm] $\mathcal{P}(X)$ [/mm] ist die größte [mm] $\sigma$-algebra [/mm] auf $X$, also die [mm] $\sigma$-algebra [/mm] auf $X$, die die meisten funktionen $f: X [mm] \longrightarrow \mathbb{R}$ [/mm] messbar macht, da ja beliebige urbilder dadurch messbar werden.


grüße
andreas

Bezug
                                
Bezug
Potenzmenge, Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:19 Mi 08.03.2006
Autor: elena27

Vielen Dank  Andreas für Deine Hilfe.
Du hast mir sehr weitergeholfen.

LG, Elena

Bezug
        
Bezug
Potenzmenge, Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Do 09.03.2006
Autor: felixf


> Sei  X nicht leere Menge und [mm]\IR[/mm] versehen mit der
> Borel-Algebra.
>  Gibt es eine Sigma-Algebra, so dass alle Abbildungen f: X
> --> [mm]\IR[/mm] messbar sind?
>  Die Antwort auf diese Frage lautet: Ja , diese Sigma
> -Algebra ist die Potenzmenge von X.

Um das zu vervollstaendigen: Die Potenzmenge ist sogar die einzige Sigma-Algebra, die dies leistet. Denn ist $A [mm] \subseteq [/mm] X$ eine beliebige Teilmenge, so betrachte die Indikatorfunktion [mm] $1_A [/mm] : X [mm] \to \IR$, [/mm] $x [mm] \mapsto \begin{cases} 1, & x \in A, \\ 0, & x \not\in A \end{cases}$. [/mm] Wenn diese messbar ist, dann muss [mm] $(1_A)^{-1}(\{ 1 \}) [/mm] = A$ in der Sigma-Algebra enthalten sein, und da $A$ beliebig war muss die Sigma-Algebra also die Potenzmenge sein.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]