matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Potenzen mit Exponenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Potenzen mit Exponenten
Potenzen mit Exponenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen mit Exponenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Mi 23.06.2010
Autor: Copperhead

Aufgabe
Hallo!
Könnte mir das jemand erklären bitte?

Also die Aufgabe ist schreiben sie die folgenden Terme als Wurzel und Radizieren sie.

64 [mm] \bruch{1}{3} [/mm] = [mm] \wurzel[3]{64} [/mm] = 4

25 [mm] \bruch{1}{2} [/mm] = [mm] \wurzel[2]{25} [/mm] = 25

Der Bruch von 64 ist 8. Wieso kommt dann zum Schluss 4?
Das ist ein Beispiel aus meinem Lernbuch, mehr wird aber dazu auch nicht erläutert.

Und dann noch:
Schreiben sie die Terme als Potenzen:
[mm] \wurzel{7} [/mm] = [mm] 7\bruch{1}{2} [/mm]

[mm] \wurzel[4]{3} [/mm] = [mm] 3\bruch{1}{4} [/mm]
Kann einer helfen??

        
Bezug
Potenzen mit Exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 23.06.2010
Autor: fred97


> Hallo!
>  Könnte mir das jemand erklären bitte?
>  Also die Aufgabe ist schreiben sie die folgenden Terme als
> Wurzel und Radizieren sie.
>  
> 64 [mm]\bruch{1}{3}[/mm] = [mm]\wurzel[3]{64}[/mm] = 4

Es soll wohl lauten:  [mm] $64^{\bruch{1}{3}} =\wurzel[3]{64}= [/mm] 4$


>  
> 25 [mm]\bruch{1}{2}[/mm] = [mm]\wurzel[2]{25}[/mm] = 25


Es soll wohl lauten:  [mm] $25^{\bruch{1}{2}} =\wurzel[2]{25}= [/mm] 5$


>  
> Der Bruch von 64 ist 8.

Was soll das bedeuten ??? meinst Du [mm] \wurzel{64}=8 [/mm]  ?





> Wieso kommt dann zum Schluss 4?

Hier ziehst Du die 3. Wurzel:  $ [mm] 64^{\bruch{1}{3}} =\wurzel[3]{64}= [/mm] 4 $

Es ist [mm] 4^3=64 [/mm]



>  Das ist ein Beispiel aus meinem Lernbuch, mehr wird aber
> dazu auch nicht erläutert.
>  
> Und dann noch:
>  Schreiben sie die Terme als Potenzen:
>  [mm]\wurzel{7}[/mm] = [mm]7\bruch{1}{2}[/mm]
>  
> [mm]\wurzel[4]{3}[/mm] = [mm]3\bruch{1}{4}[/mm]
>  Kann einer helfen??




Eine weitere Schreibweise für [mm] \wurzel[n]{a} [/mm] ist [mm] a^{1/n} [/mm]


FRED

Bezug
                
Bezug
Potenzen mit Exponenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Mi 23.06.2010
Autor: Copperhead

Ah so!
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]