matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenPotenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Potenzen
Potenzen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mi 17.01.2007
Autor: dietotenhosen2

Hallo!
Ich suche eine allgemeine Form, wie ich mit Potenzen umgehen kann.
Wie rechne ich also zum Beispiel mit [mm] e^x [/mm] etc. Gibt es da allgemeingültige Vorgehensweisen und Tipps?

Noch ein Beispiel wäre

[mm] (\bruch{2}{3})^{x-1}=(\bruch{8}{27})^{x+2} [/mm]

Bei sowas wüsste ich auf den ersten Blick nicht, wie ich vorgehen muss.

Freue mich auf eure Hilfe und Antworten!
Gruß, Markus

        
Bezug
Potenzen: Logarithmus
Status: (Antwort) fertig Status 
Datum: 12:49 Mi 17.01.2007
Autor: miniscout

Hallo!
  

> [mm](\bruch{2}{3})^{x-1}=(\bruch{8}{27})^{x+2}[/mm]

Zunächst solltest du versuchen, alle Potenzen auf die gleiche Basis zu bringen, damit du anschließend den MBLogarithmus anwenden kannst.
Bei deinem Beispiel sähe das so aus:

[mm] $(\bruch{2}{3})^{x-1}=(\bruch{8}{27})^{x+2}$ [/mm]

[mm] $(\bruch{2}{3})^{x-1}=((\bruch{2}{3})^3)^{x+2}$ [/mm]

[mm] $(\bruch{2}{3})^{x-1}=(\bruch{2}{3})^{3*(x+2)}$ |log_{\bruch{2}{3}}() [/mm]

$x-1=3*(x+2)$

...


Gruß miniscout [snoopysleep]



Bezug
        
Bezug
Potenzen: Alternativweg
Status: (Antwort) fertig Status 
Datum: 13:21 Mi 17.01.2007
Autor: Roadrunner

Hallo Markus!


Es gibt hier auch einen Alternativweg, wenn man zunächst die MBPotenzgesetz anwendet:

[mm] $\left(\bruch{2}{3}\right)^{x-1} [/mm] \ = \ [mm] \left(\bruch{8}{27}\right)^{x+2}$ [/mm]

[mm] $\left(\bruch{2}{3}\right)^{x}*\left(\bruch{2}{3}\right)^{-1} [/mm] \ = \ [mm] \left(\bruch{8}{27}\right)^{x}*\left(\bruch{8}{27}\right)^{2}$ [/mm]

Nun die Gleichung mit [mm] $\left(\bruch{2}{3}\right)^{+1}$ [/mm] multiplizieren sowie durch [mm] $\left(\bruch{8}{27}\right)^{x}$ [/mm] teilen:

[mm] $\left(\bruch{2}{3}\right)^{x}*\left(\bruch{27}{8}\right)^{x} [/mm] \ = \ [mm] \left(\bruch{8}{27}\right)^{2}*\left(\bruch{2}{3}\right)^{1}$ [/mm]

[mm] $\left(\bruch{2}{3}*\bruch{27}{8}\right)^{x} [/mm] \ = \ [mm] \bruch{64}{729}*\bruch{2}{3}$ [/mm] usw.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]